
Zentrum für
Technomathematik

An automated hierarchical eXtended finite
element approach for multiphysics problems

involving discontinuities

Dissertation

zur Erlangung des Grades

Doktor der Naturwissenschaften

- Dr. rer. nat. -

vorgelegt im

Fachbereich 3 (Mathematik und Informatik)

der Universität Bremen

von

Mischa Jahn

Supervisor:

Prof. Dr. Alfred Schmidt (University of Bremen, Germany)

Dr.-Ing. Jonathan Montalvo-Urquizo (MOCTech, Monterrey, Mexico)

Tag der mündlichen Prüfung: 18.09.2018

http://www.fb3.uni-bremen.de
http://www.uni-bremen.de
http://www.math.uni-bremen.de/zetem/MischaJahn
http://www.math.uni-bremen.de/zetem/AlfredSchmidt
http://www.moctech.com.mx/

Abstract

An automated hierarchical eXtended finite element approach for multiphysics

problems involving discontinuities

by Mischa Jahn

In this thesis, a hierarchical eXtended finite element method for the modeling and numerical

simulation of multiphysics problems and its implementation into a framework that uses auto-

mated code generation is presented. The approach consists of introducing hierarchically ordered

level set functions, motivated by the structure of the considered problem, to decompose a given

hold-all domain into several subdomains. The decomposition is guaranteed to be geometrically

consistent which means that no overlapping regions or voids can arise. Mathematically, the

approach decouples the computational mesh from the physical domains and, thereby, allows for

large deformations and topological changes, such as the rise of (new) subdomains. At domain

boundaries, quantities, or their gradient, may be modeled discontinuously and eXtended ap-

proximation spaces are introduced for the (sharp) representation of such features on the discrete

level. The enrichment is realized by Heaviside functions which are defined subject to the hierar-

chical level set functions and, hence, introduce additional basis functions and coefficients locally

at the respective (sub)domain boundary. For imposing interface and boundary conditions, the

Nitsche method is used.

By design, the developed approach is well suited to be implemented using automated code gen-

eration. As a result, the hierarchical eXtended finite element method is implemented as toolbox

miXFEM for the FEniCS framework. Therefore, the core components of FEniCS are significantly

extended and new methods (e.g. the subdivision of elements and the assembling of tensors) are

added. As the evolution of interfaces is often part of the problem, the framework miXFEM is

supplemented by a level set toolbox providing maintaining methods such as reinitialization and

volume correction as well as methods for computing a non-material velocity field.

The method and its implementation is validated against several examples and then used for the

modeling and simulation of different real-world applications in 2d and 3d. Since this thesis is

motivated by several research projects where melting and solidification processes are of interest,

we focus on these kind of problems and present results for a thermal upsetting process and

different welding processes. However, due to the generality and flexibility of the developed

framework, it can be used to rapidly implement and simulate problems from different areas

such as multiphase flow or other problems with evolving geometries.

Zusammenfassung

An automated hierarchical eXtended finite element approach for multiphysics

problems involving discontinuities

by Mischa Jahn

In der vorliegenden Arbeit wird eine hierarchische erweiterte Finite-Elemente-Methode für die

Modellierung und Simulation von multiphysikalischen Problemen und deren Implementierung in

ein Framework, welches das Konzept der automatisierten Codegenerierung nutzt, vorgestellt.

Die Methode basiert auf der physikalisch motivierten Definition von hierarchisch geordneten

Levelset-Funktionen, die ein gegebenes Gebiet in Teilgebiete zerlegen. Diese Zerlegung ist ge-

ometrisch konsistent, so dass keine Gebietsüberschneidungen oder Löcher entstehen können,

und wird zur Entkopplung des Rechengitters von der eigentlichen physikalischen Geometrie

genutzt. Dies erlaubt die Beschreibung von großen Gebiets- und auch Topologieänderungen.

Um physikalische Größen dennoch exakt darzustellen und eventuelle Unstetigkeiten über Ge-

bietsgrenzen zu berücksichtigen, werden erweiterte Finite-Elemente-Approximationsräume ver-

wendet. Die Erweiterung um zusätzliche Basisfunktionen und Koeffizienten wird durch hier-

archisch definierte Heaviside-Funktionen erreicht. Um Rand- und Interface-Bedingungen zu

setzen, wird die Nitsche Methode verwendet.

Nach Konstruktion ist der entwickelte Ansatz gut für die Verwendung von Ansätzen aus dem

Bereich der automatisierten Codegenerierung geeignet. Daher wird die hierarchische erweit-

erte Finite-Elemente-Methode als Toolbox miXFEM für das FEniCS framework implementiert.

Dazu werden sämtliche Kernkomponenten von FEniCS erweitert und viele zusätzliche Metho-

den eingeführt, z. B. um geschnittene Elemente zu zerlegen oder die Matrizen und Vektoren

aufzustellen. Die Evolution von Teilgebieten und deren Ränder ist häufig Teil der Lösung

eines multiphysikalischen Problems, daher werden zusätzliche Methoden zur Pflege der Levelset-

Funktionen, wie Reinitialisierungs- und Volumenerhaltungsmethoden, bereitgestellt. Die Imple-

mentierung der genannten Methoden erfolgt jedoch als eigenständige Levelset-Toolbox. Zudem

werden Routinen zur Berechnung nicht-materieller Geschwindigkeitsfelder mitgeliefert.

Die Validierung der entwickelten Methode und deren Implementierung geschieht durch die Be-

trachtung zahlreicher Beispiele. Anschließend werden verschiedene Anwendungsbeispiele in 2D

und 3D betrachtet. Da diese Arbeit durch verschiedene Projekte mit dem Fokus auf Schmelz-

und Erstarrungsvorgänge motiviert wird, beschränken wir uns hauptsächlich auf die Model-

lierung und Simulation von Problem aus diesem Bereich, wie das Laser-Stoffanhäufen und

Schweiß-Prozesse. Dennoch sei hervorgehoben, dass der vorgestellte Ansatz und das entwick-

elte Framework für die Modellierung und Simulation beliebiger Probleme, wie zum Beispiel im

Bereich der Mehrphasenströmung, eingesetzt werden kann.

Acknowledgements

The present thesis originates from my work at the Center for industrial mathematics (ZeTeM)

at the University of Bremen and was financially supported by the DFG (German Research

Foundation) through the Collaborative Research Center 747 “Micro cold forming”.

First of all, I would like to express my gratitude to my advisor Prof. Dr. Alfred Schmidt for

his support throughout my doctoral studies and project work. His advice and feedback has

always been very helpful and is greatly appreciated. I also want to thank my co-advisor, Dr.-

Ing. Jonathan Montalvo-Urquizo, for his efforts related to this thesis and this support during

my research visits at the Centro de Investigación en Matemáticas A.C. (CIMAT) in Monterrey,

Mexico.

My special thanks go to my colleague Andreas Luttmann who is probably one of the best office

mates one can hope for (and also makes very delicious pizza). Our many discussions on and

off-topic have been an essential element for doing this research and writing this thesis.

I am very grateful for the productive research environment at the ZeTeM and want to, in

particular, acknowledge the discussions of mathematical and modeling problems with Simon

Grützer and Michael Eden as well as their willingness to proof-read this thesis.

Last but actually most importantly, I thank my family and my family in-law for all the support

during my studies. Especially, I thank my wife Anki for her love and patience who, together

with Laura, can make me relax and forget about mathematical problems or implementation

issues in seconds.

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Research projects motivating this thesis . 1

1.1.1 Laser-based thermal upsetting processes 1

1.1.2 Production of laser welded hybrid joints 3

1.1.3 Keyhole-based laser welding . 3

1.2 Modeling and numerical solution of multiphysics problems 5

1.3 Research objectives . 8

1.4 Outline of the thesis . 9

2 A brief introduction to solving PDE-based problems involving discontinuous
features 11

2.1 Representation of interfaces and boundaries: The level set method 13

2.2 A brief introduction to (fitted) finite element methods 15

2.2.1 The finite element method for steady-state problems 15

2.2.2 The finite element method for time-dependent problems 18

2.3 A brief introduction to eXtended discretization methods 20

2.3.1 A short historical background of unfitted finite element methods 20

2.3.2 The eXtended finite element method . 21

2.3.3 A brief overview of numerical challenges arising in unfitted methods . . . 23

2.3.3.1 Discrete interface representation and approximation 23

2.3.3.2 Subdivision and quadrature . 24

2.3.3.3 Essential boundary and interface conditions 25

2.3.3.4 Stability and conditioning issues 26

ix

x Contents

2.3.3.5 Discretization of time-dependent problems 26

2.3.3.6 Miscellaneous . 27

3 A hierarchical eXtended finite element method for multiphysics problems 29

3.1 Analytical example involving multiple subdomains 31

3.2 Domain decomposition using multiple level set functions 34

3.2.1 Brief overview of methods based on multiple level set functions 34

3.2.2 Domain decomposition by using a hierarchical level set method 35

3.3 A hierarchical eXtended finite element method 39

3.3.1 Hierarchical Heaviside enrichment . 39

3.3.2 Imposing interface and boundary conditions using Nitsche’s method . . . 43

3.3.3 Time-dependent problems with moving interfaces 49

4 Automated solution of multiphysics problems involving discontinuities 55

4.1 The FEniCS project . 56

4.1.1 The Unified Form Language (UFL) . 58

4.1.2 FEniCS Form Compiler (FFC) . 60

4.1.3 DOLFIN library . 61

4.2 The PUM library . 62

4.2.1 Design and implementation details of the PUM library 64

4.2.1.1 Reinterpreting concepts of UFL 65

4.2.1.2 The FFC-PUM . 66

4.2.1.3 The DOLFIN-PUM library . 69

4.2.2 Drawbacks and missing features of the PUM library 70

4.3 miXFEM - a multiple interfaces eXtended finite element
method based on hierarchical enrichment . 70

4.3.1 Design and implementation details of the toolbox miXFEM 71

4.3.1.1 Variational formulation of multiphysics problems in UFL 72

4.3.1.2 miXFFC - A FEniCS Form Complier to consider multiphysics
problems with discontinuities . 74

4.3.1.3 miXDOLFIN library . 79

4.3.2 Implementation details of miXDOLFIN . 80

4.3.2.1 Discrete interface representation 80

4.3.2.2 Subtriangulation and quadrature 83

4.3.2.3 Interface id mapping and imposing boundary and interface con-
ditions . 85

4.3.2.4 Evolving interfaces . 87

4.3.2.5 Miscellaneous . 87

4.4 Additional numerical methods . 89

4.4.1 Level set toolbox . 89

4.4.1.1 Discretization . 90

4.4.1.2 Stabilization . 90

4.4.1.3 Reinitialization . 91

4.4.1.4 Volume correction . 93

4.4.1.5 Narrow band approach . 94

4.4.2 Construction of a non-material velocity field 96

4.4.2.1 Initialization phase . 96

4.4.2.2 Extension phase . 98

Contents xi

5 Numerical results and applications 101

5.1 The level set method . 102

5.1.1 Examples . 103

5.1.1.1 2D example: Swirling flow vortex 103

5.1.1.2 2D example: Deforming droplet 103

5.1.1.3 3D example: Swirling flow vortex 104

5.1.1.4 3D example: Deforming droplet 105

5.1.2 Simulation setup and computational approach 106

5.1.3 Results . 106

5.2 Multiphase steady-state diffusion equation . 108

5.2.1 Modeling and implementation in miXFEM 110

5.2.2 Approximation quality and convergence order 112

5.3 Two-phase Stefan problem . 112

5.3.1 Model . 113

5.3.2 Discretization and computational approach 116

5.3.3 Validation of the implementation and examples 118

5.3.3.1 Example 1: Straight interface . 119

5.3.3.2 Example 2: Straight interface . 119

5.3.3.3 Example 3: Circular interface . 120

5.3.3.4 Example 4: Circular interface . 121

5.3.4 Results . 122

5.3.5 Convergence analysis for Section 5.3.3.2 123

5.4 Laser welded hybrid joints . 124

5.4.1 Modeling the process with the hierarchical level set method 125

5.4.2 Discretization and computational approach 129

5.4.3 Results . 131

5.5 A laser-based thermal upsetting process . 136

5.5.1 Modeling the process with the hierarchical level set method 137

5.5.2 Discretization and computational approach 139

5.5.3 Results . 143

5.6 Keyhole-based laser welding . 147

5.6.1 Modeling the process with the hierarchical level set method 147

5.6.2 Discretization and computational approach 149

5.6.3 Results . 149

5.7 Multiphase flow . 155

5.7.1 Modeling approach . 156

5.7.2 Coupled model using the hierarchical level set method 157

5.7.3 Discretization and computational approach 158

5.7.4 Results . 159

6 Summary and outlook 161

6.1 Summary . 161

6.2 Outlook and future work . 163

A Keyhole model 165

A.1 Laser model . 165

A.2 Heat conduction at the keyhole wall . 166

xii Contents

A.3 Location of the heat source . 167

A.4 Computation scheme for the keyhole geometry 168

A.5 Multiple reflections . 169

A.6 Level set representation of the keyhole geometry 171

Bibliography 173

List of Figures

1.1 Laser rod end melting. 2

1.2 Laser blank rim melting. 2

1.3 Laser welded hybrid overlap joint. 4

1.4 2D cross section of the butt joint at process start and process end. 4

1.5 Process sketch of keyhole-based laser welding. 5

1.6 Side and top view of keyhole welding. 5

2.1 Exemplary setting as described in Definition 2.1. 11

2.2 Exemplary setting for Example 2.1. 12

2.3 Visualization of the idea of the level sets method. 14

2.4 Setting for Example 2.2. 17

3.1 Exemplary setting as described in Definition 3.1. 30

3.2 Multiphase setting for Example 3.1 . 32

3.3 Domain decomposition using hierarchical level set functions. 37

3.4 Hierachical level set method for Example 3.2 . 38

3.5 Setting in Example 3.3. 42

4.1 Overview of FEniCS. 58

4.2 Overview of the FEniCS’ approach to solve PDE-based problems. 58

4.3 Schematic overview of some core components of DOLFIN. The arrows indicate
dependencies of the modules [1, Chap. 10]. 61

4.4 Implementation structure of Example 2.2 in DOLFIN (C++ interface). 62

4.5 Assembly in DOLFIN. 63

4.6 Part of the generated code for computing the local contributions to tensors. . . . 63

4.7 Definition of the bilinear forms in FEniCS and the PUM library. 67

4.8 Definition of the bilinear forms in the PUM library and miXFEM. 75

4.9 2D visualization of the interface representation approach. 81

4.10 Visualization of unique assignment of intersections to element edges. 82

4.11 2D visualization of the approximation error when using wrong level set function. 82

4.12 Visualization subtriangulation scheme . 83

4.13 Visualization subtriangulation scheme for multiple surfaces. 84

4.14 Visualization a domain id mapping possibility for Example 3.2. 86

4.15 Evaluation points of in the DSCE velocity computation method [2]. 97

5.1 2D example swirling flow vortex. 103

5.2 2D example rising deforming droplet. 104

5.3 3D example deformation flow. 105

xiii

xiv List of Figures

5.4 3D example rising deforming droplet. 105

5.5 Time stepping synchronization. 106

5.6 Problem setting for the multiphase example. 109

5.7 Part of the UFL implementation for the multiphase example. 112

5.8 Visualization of the solution of the multiphase example. 113

5.9 Sketches of different settings for the two-phase Stefan problem. 114

5.10 Time stepping synchronization. 117

5.11 Part of the UFL implementation of the two-phase Stefan problem. 118

5.12 Visualization of Example 1. 119

5.13 Visualization of Example 2. 120

5.14 Visualization of Example 3. 121

5.15 Visualization of Example 4. 121

5.16 Generation of laser-welded hybrid joints. 125

5.17 Different process stages of the hybrid welding process. 126

5.18 Overlap hybrid joint: Initial configuration. 131

5.19 Overlap hybrid joint: Laser heating. 132

5.20 Overlap hybrid joint: Nucleation of melt pool. 133

5.21 Overlap hybrid joint: Evolution of melt pool. 134

5.22 Overlap hybrid joint: Penetration of aluminum sheet. 135

5.23 Thermal upsetting process. 137

5.24 Different process stages of the laser-based thermal upsetting process. 138

5.25 Analytical approach for approximating the evolution of Γ1. 141

5.26 Thermal upsetting process: Visualization of the temperature distribution for
different process stages. 145

5.27 Thermal upsetting process: Visualization of the domains for different process
stages. 146

5.28 Keyhole-based laser welding. 147

5.29 Visualization of simulation results for steel 1.0330. 151

5.30 Keyhole geometries without and with multi-reflections for the material steel 1.4301.152

5.31 Keyhole geometries with multi-reflections for αfr = 0.38 and without multi-
reflections but αfr ≈ 0.60 for steel 1.4301. 153

5.32 Melt pool geometry: Experimental and numerical results for aluminum 3.2315. . 155

5.33 Melt pool geometry: Experimental and numerical results for steel 1.0330. 155

5.34 Melt pool geometry: Experimental and numerical results for steel 1.4301. 156

5.35 Problem setting for the multiphase flow example. 157

5.36 Rising droplets: Results for different time steps. 160

A.1 Keyhole half-geometry. 167

A.2 Discrete iteration to compute the Keyhole shape. 169

A.3 Scheme for computing the reflection angle for reflected rays. 170

A.4 Approximated keyhole wall. 171

List of Tables

2.1 Approximation errors for FEM (fitted mesh). 17

2.2 Approximation errors for FEM (unfitted mesh). 18

2.3 Approximation errors for XFEM. 23

5.1 Projection errors errors and estimated order of convergenc 113

5.2 Approximation errors and estimated order of convergence. 113

5.3 Approximation errors and estimated order of convergence for Example 2. 124

5.4 Approximation errors and estimated order of convergence for Example 2. 124

5.5 Approximation errors and estimated order of convergence for Example 2. 124

5.6 Material properties of air, steel 1.0330 and aluminum 3.2315 (solid/liquid)[3–5]. 136

5.7 Process parameters. 136

5.8 Material properties of Argon and steel 1.4301 (solid/liquid)[3–5]. 143

5.9 Process parameters. 144

5.10 Material properties of steel 1.4301, steel 1.0330 and aluminum 3.2315 [3–5]. . . . 150

5.11 Experimental data and numerical results for aluminum 3.2315. 154

5.12 Experimental data and numerical results for steel 1.0330. 154

5.13 Experimental data and numerical results for steel 1.4301. 154

5.14 Material properties of the considered fluids represented by Ωi. 159

xv

Chapter 1

Introduction

In modern engineering, various complex processes can be modeled by systems of partial dif-

ferential equations (PDEs) which may be nonlinear and coupled. Problems involving multiple

and coupled physical phenomena, such as solid-liquid phase transitions with fluid flow in the

liquid, on various (sub)domains, are of particular interest. Such processes usually involve mov-

ing boundaries and interfaces and are referred to as multiphysics problems in this thesis. From

a macroscopic point of view, material characteristics are often non-smooth across such inter-

faces and boundaries so that gradients of affected field quantities or the primary field quantities

exhibit jumps. Therefore, interfaces and boundaries are modeled sharply and the involved quan-

tities are modeled discontinuously. While examples for multiphysics problems can be found in

various fields such as multiphase flow and situations with fluid-structure-interaction, this work

is mainly motivated by some engineering applications that involve melting and solidification

processes.

1.1 Research projects motivating this thesis

This thesis is motivated by different projects that have been worked on as multidisciplinary work

between engineers and mathematicians. In all of these projects, the melting and solidification

of different materials is considered which may involve a capillary boundary.

1.1.1 Laser-based thermal upsetting processes

Within the Collaborative Research Center 747 ”micro cold forming”, industrial manufacturing

methods are developed that make possible the production of hundreds or even thousands of

metallic micro components per minute. Usually, these parts are smaller than 1 mm in two di-

mensions so that so-called size effects [6] have to be considered which are defined as ”deviations

from intensive or proportional extrapolated extensive values of a process which occur, when

1

2 Chapter 1: Introduction

(a) Coaxial process de-
sign.

(b) Lateral process de-
sign.

(c) Forming step after solidifi-
cation.

Figure 1.1 Laser rod end melting.

(a) Sketch of process design to generate
continuous and discontinuous preforms.

(b) Sketch of process de-
sign to generate continu-
ous and closed preforms at
voids.

Figure 1.2 Laser blank rim melting.

scaling the geometrical dimensions”. While the occurrence of size effects prevents the appli-

cation of conventional processes used in macro scale, they can be utilized for the development

of new processes. One example of such a process is the laser-based thermal upsetting process,

which is the first stage of an alternative cold forming process for the generation of functional

parts in micro scale.

The general idea of the developed two-stage process is to generate a so-called preform in a

thermal upsetting step and then apply a subsequent forming step in a open die. The thermal

upsetting process, which is also called master forming process, is based on applying a laser heat

source to the workpiece, melting the material and taking advantage of the shape-balance effect,

which means that surface tension dominates gravity force. This two-stage cold forming process,

which can generate upset ratios s ≫ 500 in contrast to conventional multi-stage cold forming

that is limited to s ≈ 2, is described and analyzed in various publications, e.g. [7–13], and has

been successfully applied to rods, blank rims, and pieced blanks of steel 1.4301.

Laser rod end melting: When considering rods, the idea behind the process is to upset a

certain length l0 of a rod with diameter d0, which usually is between 0.1 mm and 0.5 mm, by

applying a laser beam to the material. Depending on the process configuration, this can be

done coaxially, see Figure 1.1(a), or laterally, see Figure 1.1(b), while in the latter case, the

beam is deflected along the material. The laser beam melts parts of the rod and the molten

material forms spherically due to the shape-balance effect. This arising geometry is preserved

Chapter 1: Introduction 3

even after solidification so that the generated preform can be formed in, for example, an open

die in a second step, see Figure 1.1(c).

Laser blank rim melting: The thermal upsetting process can also be applied to blanks whose

thickness may vary from 25 µm to 0.5 mm. The process is based on deflecting a laser beam

along the blank rim, thereby melting the upper part of the work piece. Depending on the

choice of process parameters such as the laser power and the deflection velocity, continuous

cylindrical preforms and discontinuous preforms can be generated. The process can also be

used to generate collars at blank voids, see Figure 1.2(b).

1.1.2 Production of laser welded hybrid joints

Another industrial application that can be modeled using an approach similar to the laser-

based thermal upsetting process is the welding of hybrid joints. These hybrid joints offer

certain economic advantages and their characteristics depend on, among others, the material

behavior, inter metallic compounds, and the used process parameters and have to be carefully

analyzed [14]. Within an AiF funded project (IGF 360 ZN), the production and quality of laser

welded hybrid joints consisting of aluminum 3.2315 and steel 1.0338 as well as aluminum 3.2315

and titanium 3.7165 have been considered. Within the project, the process, the material, and

the structure simulations have been coupled in order to predict the weld seam geometry which

gives the limits of the specimen’s stability and resilience. Produced specimens, which can be

overlap joints and butt joints, are widely used within the automotive and aerospace industries.

Overlap joints: For the production of overlap weld joints, steel and aluminum sheets with

thickness of around 1 mm (steel) and 1.5 mm (aluminum) are placed with a small overlapping

region whose length is around 3 mm to 5 mm in most configurations. A defocused laser beam

is then applied to the steel sheet. While the steel does not melt, the energy is conducted to the

aluminum which melts since it has a much lower melting temperature than steel. The process

setup is visualized in Figure 1.3.

Butt joints: The process design when producing butt joints of aluminum and titanium is

based on including a notch within the aluminum sheet and positioning the sheets vertically,

where the titanium is inserted into the notch. Thereby, both materials overlap on each side, see

Figure 1.4. Two laser sources are used to heat this region, melting the aluminum which then

wets the titanium and, finally, create a hybrid joint. Typically, the thickness of the titanium

sheets are between 0.9 mm and 2.0 mm and the thicknesses of the aluminum sheets varied

between 1.2 mm and 3.0 mm.

1.1.3 Keyhole-based laser welding

In contrast to heat conduction welding, which is, for example, used for the production of laser

welded hybrid joints, some applications need a narrow but deep weld seam geometry and a small

4 Chapter 1: Introduction

heat affected zone. This can be achieved by applying a focused laser beam to the material, see

Figure 1.5. If the intensity of the laser beam is high enough, a narrow and long hole, the

so-called keyhole, is formed in the material, see Figure 1.6. In the keyhole, which follows the

motion of the laser along the melting line, the laser beam is reflected multiple times so that the

overall absorption rate is significantly increased while, at the same time, the heat-affected zone

is locally limited. As a result, a small weld seam with a high depth can be created and a high

process speed can be achieved. The keyhole-based laser welding process has been successfully

applied to various materials and is already fit for mass production. However, there is still need

(a) Process design for overlap joint.

steel

aluminum

laser

x2

x1

aluminum

steel

x1

x2

(b) 2D cross section at process start and process end.

Figure 1.3 Laser welded hybrid joint: Sketch of process design and realization for
an overlap joint.

aluminum

titan.

la
se
r laser

(a) Process start

aluminum

titan.

(b) Process end

Figure 1.4 2D cross section of the butt joint at process start and process end.

Chapter 1: Introduction 5

workpiece(s)laser

welding direction

keyholemelt pool

weld seam

Figure 1.5 Process sketch of keyhole-based laser welding.

z

x

weld seam
meltpool

laserkeyhole

meltpool

weld seam

y

x

keyhole

Figure 1.6 Side and top view of keyhole welding.

for simulating these processes, e.g., in order to optimize the weld seam and, hence, the resulting

product.

1.2 Modeling and numerical solution of multiphysics problems

In general, engineering and industrial processes often include multiple phases whose (unknown)

evolution is part of the problem and is therefore given implicitly by coupled equations describing

different physical phenomena. For the modeling, these domain boundaries are often considered

as discontinuities across which field quantities exhibit a jump or kink. In regards to the men-

tioned applications, all processes can be modeled with PDEs by coupling the Stefan problem

[15, 16] with the Navier-Stokes equations including a free capillary surface [17]. The Stefan

problem allows for the modeling of melting and solidification processes and the Navier-Stokes

equations describe the fluid flow within the molten material and the evolution of the melt pool’s

surface. Each process model of the presented applications then consists of a system of coupled

PDEs with suitable initial and boundary conditions.

PDE-based problems can be solved numerically using finite differences [18, Chap. 2], finite

volumes [19], and finite elements [18, Chap. 3]. In this thesis, we only consider (variants of)

the latter, which is the most common approach. Within the finite element method (FEM),

a PDE is written in a variational form and discretized on a mesh so that the task of solving

6 Chapter 1: Introduction

the problem comes down to computing the solution of an algebraic equation for some discrete

coefficients. In order to get the full solution on the whole domain, the computed values are

interpolated using the finite element basis functions.

A principle drawback of using the finite element method is that its implementation can be

difficult, error-prone, and is usually very time consuming. This is because small changes of the

problem formulation or discretization often result in many code changes. Also, the development

of a more general framework that allows tackling different PDE-based problems instead of

solving a particular one requires a lot of effort and testing, especially when specific methods

are needed for a small subset of problems. Due to this, more and more frameworks make

use of the idea to, at least partly, automate the generation of code. The basic concept of

automated code generation is to write and use meta-programs which can interpret a higher level

of abstraction and generate corresponding lower level code. Using automated code generation

has the advantage of consistent, high quality code while also allowing for so-called abstract

coding, whereby the user can write high-level code which is translated to low-level code. Thus,

the approach allows for rapid prototyping and the solution of very different problems using the

same framework. However, the consequence of the flexibility and usability of such approaches

is that writing the programs which have to generate the code is a rather complex and time-

consuming task.

In the past, all previously mentioned applications motivating this thesis have been tackled

using numerical methods especially tailored to fit the models specific requirements despite the

similarities of the respective application’s model.

(Method 1) For the thermal upsetting process, a combined enthalpy-ALE method has been

developed [9, 20, 21].

(Method 2) For the welding of hybrid joints, an enthalpy method has been used where wetting

angles have been prescribed [14, 22].

(Method 3) For the keyhole-based laser welding, the approach is based on considering the heat

equation where a precomputed keyhole geometry is used for imposing boundary

conditions using on a adaptively refined mesh [14, 22].

The use of different methods particularly adapted to the application has been essential. This

is because although the finite element method can be used for a wide range of physical and

engineering problems, its application to multiphysics problems involving discontinuities is very

limited. The reason for this is that conventional methods can only represent discontinuous

quantities accurately when the interface and boundaries align with mesh boundaries. While this

compatibility of mesh and (internal) domain boundaries can easily be guaranteed for steady-

state situations by creating an appropriate mesh, much more complex approaches are needed to

consider time dependent problems involving discontinuities. This is because in time-dependent

Chapter 1: Introduction 7

situations, not only the mesh has to be moved and adapted according to the movement of the

interfaces and boundaries, which is already very complex if more than two phases are involved,

but also topological changes may arise and have to be considered.

Due to these shortcomings of the conventional finite element method, a lot of effort has been

put in developing so-called eXtended discretization methods (XDMs). Instead of adapting the

computational mesh during the simulation, the core idea of these methods is to decouple the

computational mesh from the physical geometry. For this purpose, indicator functions are in-

troduced which allow for the mesh independent representation of discontinuities and, thereby,

separating the domain into subdomains. Based on the locations of the discontinuities, addi-

tional basis functions are added to the FEM-based approximation spaces, which are then called

extended or enriched. These additional basis functions, which are added to accurately consider

the discontinuous features at the domain boundaries and interfaces, are usually constructed

by multiplying already included (standard) basis functions of an approximation space with

a so-called enrichment function particularly chosen to describe the feature which has to be

considered.

While the combination of eXtended discretization methods with indicator functions is a very

interesting approach to model and solve problems with moving or evolving domains, handling

problems which involve multiple domains separated by different boundaries and interfaces is still

complex. Namely, issues arise concerning the domain decomposition and the enrichment scheme.

As the sign of one indicator function can only decompose a domain into two subdomains,

more indicator functions are needed to separate a given domain into several, meaning more

than two, subdomains. Therefore, complex situations can arise, such as multi-junctions, where

multiple interfaces or boundaries meet and intersect each other. Moreover, additional effort is

required to ensure that the method, which has to allow the independent evolution of several

discontinuities respectively indicator functions, is geometrically consistent, meaning that no

voids or overlapping domains arise during the simulation. In regards to adding basis functions to

the approximation space, the arbitrary evolution of the subdomains requires a robust approach

so that the discretization allows for stable systems of equations. Therein, the process of enriching

basis functions must be able to take into account multiple discontinuities.

A consequence of the arising difficulties when multiple subdomains are considered is that, to

the best of the author’s knowledge, most articles in literature derive a complete approach only

for two-phase situations and, at most and only in a few cases, comment on how to extend

the respective approach to tackle problems involving more domains. Instead, most approaches

extend the discrete approximation space by introducing only one enrichment function containing

the locations of all discontinuities to avoid typical problems caused by the enrichment scheme

such as linear dependency. Hence, there are only few articles considering n-phase problems with

n > 2.

8 Chapter 1: Introduction

With respect to the applications mentioned in Section 1.1, we want to exemplarily mention [23].

In this work, the micro structure evolution during the solidification process of multi-component

alloys is modeled and simulated. For this, multiple level set functions are used and ideas of

interface tracking methods are incorporated to allow for a consistent domain description.

Besides melting and solidification processes, where the additional challenge arises that we have

non-material velocities moving the interfaces and material velocities that describe the fluid flow

within the melt, an important research area where problems with multiple discontinuities arise

is multiphase flow. An extensive overview of an approach called cut finite elements, which is

very similar to the eXtended finite element method as pointed out in Remark 2.4, is given in

[24]. However, in contrast to melting and solidification processes, multiphase flow problems

are driven by material velocities which are usually continuous across interfaces. Therefore, the

geometric consistency of a domain is implicitly conserved.

1.3 Research objectives

The overall objective of this thesis is to provide a flexible and robust framework, based on the

combination of the level set method with the eXtended finite element method, for the modeling

and simulation of multiphysics problems involving arbitrary discontinuities. There are three

main challenges which have to be considered,

(Challenge 1) the geometrically consistent definition and representation of subdomains which

may evolve or vanish in time,

(Challenge 2) a robust enrichment scheme that can consider an arbitrary number of discon-

tinuous features of a quantity, involving jumps on its values or on the values of

its derivative, and

(Challenge 3) the computational implementation of such a method into a flexible framework

to tackle very different problems.

This thesis addresses these three issues for the numerical solution of problems involving multiple

domains and evolving discontinuities by

(Task 1) introducing a domain decomposition method which is inspired by [25] and based on

hierarchically ordered level set functions,

(Task 2) defining of corresponding hierarchically enriched approximation spaces using Heavi-

side enrichment [26] where interface conditions are imposed using Nitsche’s method

[27],

(Task 3) implementing the resulting so-called hierarchical eXtended finite element method

into a framework using automated code generation [1], and

Chapter 1: Introduction 9

(Task 4) using this method and the framework for the solution of real-world multiphysics

problems such as the applications motivating this thesis.

Therefore, the idea is to introduce a hierarchical level set method which allows the handling

of any domain configuration, which may change in time in a consistent way, meaning that no

special methods are required to prevent overlapping domains or the occurrence of voids. The

domain boundaries are represented by (parts of) the zero level sets of the level set functions

and discrete finite element approximation spaces are locally enriched using Heaviside enrich-

ment. For imposing interface conditions, Nitsche’s method is used. By introducing different

enrichment levels that correspond to the level of hierarchy of the level set function, a robust

scheme is developed which is especially suited to be implemented in a framework utilizing the

idea of automated code generation. With this, the resulting extended framework can be used

to rapidly model and solve all kind of PDE-based problems involving an arbitrary number of

discontinuities. We demonstrate the method’s capabilities by applying it to several examples

with known a solution and to simulate complex industrial applications.

1.4 Outline of the thesis

The thesis is organized as follows:

(Chap. 2) In Chapter 2, we start with a brief introduction to solving PDE-based problems

involving discontinuities. By limiting ourselves to a problem consisting of two sub-

domains separated by one interface at which a discontinuous feature occurs, the

geometric situation can be described using the level set method. We present the

general idea and introduce the notation used throughout this thesis. For an ex-

ample, we consider an elliptic steady-state diffusion problem which is solved ana-

lytically and numerically. For the numerical solution, we successively describe the

conventional finite element method, illustrate the importance of representing the

discontinuity on mesh boundaries and address issues when considering time depen-

dent problems. After that, we present the general idea of the finite element method

that is based on decoupling mesh and geometry as powerful alternative and discuss

challenges arising when it is used.

(Chap. 3) In Chapter 3, we develop a hierarchical eXtended finite element method, which

is a robust approach to handle multiphysics problems involving arbitrary disconti-

nuities. Therefore, we first present a geometrically consistent domain decomposi-

tion scheme that is based on hierarchically ordered level set functions. Based on

these functions a conventional finite element approximation space is enriched using

Heaviside enrichment. Boundary and interface conditions are imposed by Nitsche’s

method.

10 Chapter 1: Introduction

(Chap. 4) In Chapter 4, we address numerical challenges arising when solving multiphysics

problem and present the implementation of the hierarchical eXtended finite element

method. The developed approach is, by construction, well suited to be implemented

within an automated code generation approach. For several reasons which are

mentioned in the corresponding section, we choose to implement the method as

a toolbox called miXFEM for the open source FEniCS framework. Therefore, we

first give an overview of the FEniCS project and comment on a previous work to

consider problems involving discontinuities. Afterwards, we present the design idea

and the most important implementation aspects of the toolbox miXFEM. As the

numerical solution of multiphysics problem often requires additional methods, we

include approaches for handling evolving interfaces and methods for computing

non-material velocity fields.

(Chap. 5) In Chapter 5, we present numerical results for various applications. We begin the

chapter by briefly summarizing validation results obtained by considering several

examples including academic problems with known analytical solution. Then, we

focus on real world applications such as the generation of hybrid joint, keyhole-

based laser welding, and the thermal upsetting process. By successively increasing

the complexity of the considered problems, the enhanced modeling and simulation

capabilities of the method and implemented framework as well as its generality and

flexibility are illustrated.

(Chap. 6) Finally, the thesis is summarized in Chapter 6, and we discuss open questions and

address future work.

Chapter 2

A brief introduction to solving PDE-based

problems involving discontinuous features

To introduce some notation and motivate the method developed in Chapter 3, we consider

the most basic setting for a multiphase problem which consists of a hold-all domain Ω that is

separated into two subdomains by an interface. This setting can be described by

Definition 2.1 (Basic domain setting). Let Ω ⊂ Rd represent a physical domain consisting

of two disjoint subdomains Ω1 and Ω2 that are separated by a sharp and sufficiently smooth

internal boundary called interface Γ1,2 := interiord−1

Ä
Ω̄1 ∩ Ω̄2

ä
such that we have Ω = Ω1 ∪

Ω2∪Γ1,2. The unit normal vector n⃗ is given by the outward-pointing normals n⃗i to ∂Ωi, i = 1, 2,

and the unit normal at Γ1,2 is defined as n⃗1,2 = n⃗1 = −n⃗2.

Using this setting, which is visualized in Figure 2.1, we briefly recall the weak solution theory

and then illustrate the concepts of the conventional finite element method and the eXtended

finite element method when a quantity exhibits a discontinuous feature across the interface

Γ1,2. Consider the following example which could result from applying Rothe’s method to the

(scaled) heat equation, see also Section 3.3.3.

Example 2.1 (Steady-state diffusion problem). Let Ω ⊂ Rd be a fixed polygonally bounded

domain, with ∂Ω = ΓD ∪ ΓN and outwards-pointing normal n⃗, that consists of the disjoint

subdomains Ω1 and Ω2 separated by a sharp and sufficiently smooth interface Γ1,2 with unit

Ω1 Ω2

𝜕𝜕Ω

𝑛𝑛1,2

𝑛𝑛2,1

Ω

Γ1,2

Figure 2.1 Exemplary setting as described in Definition 2.1.

11

12 Chapter 2: Solving PDE-based problems involving discontinuous features

Ω1

Ω2

𝜕𝜕Ω
𝑛𝑛1,2

Ω

Γ1,2

Figure 2.2 Exemplary setting for Example 2.1.

normal vector n⃗1,2. For ξ ≥ 0, κ|Ωi ∈ L∞(Ωi), and given data which is sufficiently smooth, find

u : Ω1 ∪ Ω2 → R s.t. it solves the problem given by

ξu−∇ · (κ∇u) = f in Ω1 ∪ Ω2,

u = gD on ΓD,

−κ∇u · n⃗ = gN on ΓN,

Jκ∇uK · n⃗1,2 = g1,2 on Γ1,2,

JuK = q1,2 on Γ1,2,

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

for a situation similar to the setting depicted in Figure 2.2. Here, the operator J·K denotes the

jump of a quantity JuK =
(
u|Ω1

)
Γ1,2

−
(
u|Ω2

)
Γ1,2

that is given by comparing (in trace sense) the

limiting value of u in Ω1 and Ω2 when approaching the interface Γ1,2.

Variational formulation and weak solution: In order to define the weak formulation of

the problem and prove that there exists a unique weak solution, we first introduce

U := {v ∈ H1(Ω1 ∪ Ω2) : v = gD on ΓD, JvK = q1,2 on Γ1,2} (2.2)

and

V := {v ∈ H1(Ω1 ∪ Ω2) : v = 0 on ΓD, JvK = 0 on Γ1,2}. (2.3)

The weak formulation of Example 2.1 is then given by: Find u ∈ U such that for all v ∈ V the

integral identity

∫
Ω1∪Ω2

ξuv dx+ κ∇u · ∇v dx =

∫
Ω1∪Ω2

fv dx−
∫
ΓN

gNv dx+

∫
Γ1,2

g1,2v dx (2.4)

holds, where we assume that f ∈ L2(Ω1 ∪Ω2), gN ∈ L2(ΓN), g1,2 ∈ L2(Γ1,2), and ξ, κ ∈ L∞(Ω),

with 0 < a < κ, a ∈ R almost everywhere.

If u ∈ U satisfies equation (2.4) for all v ∈ V , we call u a weak solution to Example 2.1.

Unfortunately, U is not a Hilbert space and obviously U ̸= V , therefore we can not use the

Chapter 2: Solving PDE-based problems involving discontinuous features 13

integral identity to test with the solution itself to gain important estimates and apply the

theorem of Lax-Milgram.

Hence, we first introduce the following (weak) auxiliary problem for ũ, v ∈ V

∫
Ω1∪Ω2

ξũv dx+ κ∇ũ · ∇v dx = −
∫
Ω1∪Ω2

(ξwv + κ∇w · ∇v) dx

+

∫
Ω1∪Ω2

fv dx−
∫
ΓN

gNv dx+

∫
Γ1,2

g1,2v dx,
(2.5)

summarized to

a(ũ, v) = L(v) (2.6)

with bilinear form a and linear form L, where we assume that w ∈ H1(Ω1 ∪ Ω2) and that all

other functions have the same regularity as before. With this assumptions, the theorem of

Lax-Milgram can be applied to equation (2.5) showing that there is a unique solution ũ ∈ V

of equation (2.5). As a result, we only have to find a function w ∈ H1(Ω1 ∪ Ω2) so that the

conditions given by equation (2.1b) and equation (2.1e) hold to solve Example 2.1. In brief,

the function w is in essence an extension of the boundary value of gD and the jump q1,2, see

Section 3.1 and the following analysis for details. With this, we define u = ũ+ w ∈ U which is

a solution of Example 2.1.

2.1 Representation of interfaces and boundaries: The level set

method

When considering analytical or numerical problems, an interface or boundary Γ1,2 is usually rep-

resented by the zero level of an (explicitly given) indicator function or by an explicit parametriza-

tion. In this thesis, we exclusively use the level set method to describe interfaces and boundaries

which, due to its simple idea and universalism, can be used for a very wide class of problems.

Please note that while the level set method can of course also be used to describe steady-state

interfaces and boundaries, we use the more general setting where all quantities may depend on

time.

The basic idea of the level set method [28] is to introduce a continuous scalar function φ : Ω×
[t0, tf] → R on a given domain Ω ⊂ Rd, whose zero level set

Γ1,2(t) = {x ∈ Ω : φ(x, t) = 0}, t ∈ [t0, tf],

represents a time dependent discontinuity. By using the zero level set and the sign of φ = φ(·, t),
the hold-all domain Ω can be divided into the two subdomains and the separating interface

Ω(t) = Ω1(t) ∪ Ω2(t) ∪ Γ1,2(t),

14 Chapter 2: Solving PDE-based problems involving discontinuous features

(a) Domains Ω1(t) and Ω2(t) are
separated by the zero level set
Γ1,2(t) of φ.

(b) Visualization of some level
sets of φ.

Figure 2.3 Visualization of the idea of the level sets method using a scalar function
φ.

with x ∈ Ω1(t) ⇔ φ(x, t) < 0 and x ∈ Ω2(t) ⇔ φ(x, t) > 0, cf. Figure 2.3.

For ∥∇φ∥ > 0 at Γ1,2, the level set method allows for an easy computation of the unit normal

n⃗1,2 and the curvature C which are given by

n⃗1,2 =
∇φ

||∇φ||
and C = ∇ · n⃗1,2 = ∇ ·

Ç
∇φ
∥∇φ∥

å
,

which is useful in many applications such as fluid dynamics.

There are various functions φ which can be defined and used within the level set method,

however, from a numerical point of view it is important that the gradient ||∇φ|| neither vanishes
nor becomes too large. Due to this, the literature suggest to use a so called signed distance

function, such as

φ(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− min

y∈Γ1,2(t)
||x− y||2, if x ∈ Ω1(t)

min
y∈Γ1,2(t)

||x− y||2, if x ∈ Ω2(t)
,

so that it is ||∇φ|| = 1 if the interface is smooth.

Given the initial value φ(·, t0) with zero level set Γ1,2(t0), the evolution of the hyperbolic level

set function φ and consequently of the interface Γ1,2 in time can be described by the transport

equation
∂φ

∂t
+ V⃗ · ∇φ = 0, (2.7)

where V⃗ = V⃗ (x, t) has to be a sufficiently smooth velocity field.

Since the transport equation itself cannot change the image of the function, which is, e.g., re-

quired to represent topology changes, an additional boundary condition on the inflow boundary

∂Ωin := {x ∈ ∂Ω : V⃗ (x, t) · n⃗(x) < 0, t ∈ [t0, tf]} can be defined by a continuous function

φin : ∂Ωin× [t0, tf] → R. With this the level set problem in strong formulation is given by: Find

Chapter 2: Solving PDE-based problems involving discontinuous features 15

φ ∈ C1(Ω× (t0, tf)) ∩ C0(Ω̄× [t0, tf]), s.t.

∂φ

∂t
+ V⃗ · ∇φ = 0 in Ω× (t0, tf),

φ(·, t0) = φ0(·) in Ω,

φ(·, t) = φin(·, t) on ∂Ωin × [t0, tf]

(2.8)

holds.

2.2 A brief introduction to (fitted) finite element methods

A powerful framework for the numerical approximation of PDE problems is the finite element

method (FEM). The general idea is to write a PDE in a variational form, discretize the physical

domain using a simplicial mesh, and define a discrete approximation space whose basis usually

consists of piecewise polynomials. Then, the task of solving a PDE-based problem comes down

to computing the solution of a finite dimensional system of equations.

Given a domain Ω that is bounded polygonally, let Sh be a shape regular mesh consisting

of d-simplices with d denoting the dimension and h > 0 is the maximum diameter h =

maxS∈Sh
diam(S) such that

⋃
S∈Sh

= Ω̄. For any such triangulation Sh, we define

V m
cg,h = {vh ∈ C0(Ω) : vh|S ∈ Pm(S), ∀S ∈ Sh}, (2.9)

to be the finite element approximation space consisting of continuously connected piecewise

polynomials in Pm, with m ≥ 1 denoting the polynomial degree, where all degrees of freedom

at common nodes of neighboring elements S are shared by all adjacent elements, i.e. these

nodes are single valued. In addition, we define

V m
dg,h = {vh ∈ L2(Ω) : vh|S ∈ Pm(S), ∀S ∈ Sh}, (2.10)

to be the space containing discontinuous piecewise polynomials where all elements contain their

own degrees of freedom so that nodes on shared edges are multi valued.

2.2.1 The finite element method for steady-state problems

Over the last decades, the finite element method has been very successfully used to simulate

various applications that can be described by so-called single-phase problems. Using additional

techniques, it can also be used to consider more complex problems involving two or more

subdomains and coupled quantities. However, it is well known that the approximation quality

and convergence behavior of the finite element method depend on the mesh and the polynomial

16 Chapter 2: Solving PDE-based problems involving discontinuous features

degree of the discrete function space. Therefore, if the PDE-based problem involves a non-

smooth feature, the mesh has to be conforming to the feature’s location, e.g., by representing it

via edges or facets, to achieve the maximal order of convergence. In the following, we consider

a steady-state heat equation on a domain consisting of two subdomains separated by a sharp

interface where solution exhibits a kink at the interface. This specific version of Example 2.1 is

used for illustrating the convergence behavior.

Example 2.2 (Specific version of Example 2.1). Consider Example 2.1 on Ω = (0, 1)2 with

∂Ω = ΓD ∪ ΓN, where ΓD = [0, 1] × {0} ∪ [0, 1] × {1} and ΓN = ∂Ω \ ΓD. We define the

subdomains by Ω1 = (0, 1)× (0, 0.5) and Ω2 = (0, 1)× (0.5, 1) separated by Γ1,2 = (0, 1)×{0.5},
cf. Figure 2.4. For κ|Ω1 = 2, κ|Ω2 = 1, and ξ = 0, we choose the right-hand-side f and the

boundary conditions gD and gN as well as the flux g1,2 and the jump q1,2 across Γ1,2 such that

u(x) = u(x, y) = κ
(
exp(κφ(x))− 1

)
(2.11)

with κ|Ω1 = 2 and κ|Ω2 = 1 and

φ(x) = φ(x, y) = y − 0.5 (2.12)

is a solution of Example 2.1.

We approximate the solution of this problem with the finite element method. Let Sh be a tri-

angulation covering Ωh with Ωh = Ω and ΓD,h = ΓD and ΓN,h = ΓN since Ω is polygonally

bounded. Since it is q1,2 = 0 in equation (2.1e) for the given setting, we expect the solution of the

given problem to be continuous. Consequently, we choose V m
cg,h as discrete approximation space.

After replacing all quantities with their discrete counterparts respectively their finite element

approximation, the discretized variational formulation reads:

Find uh ∈ V m
cg,h with uh = gD,h on ΓD s.t. for all vh ∈ V m

cg,h

∫
Ωh

κh∇uh · ∇vh dx
a(uh,vh)

=

∫
Ωh

fhvh dx−
∫
ΓN

gN,hvh dx+

∫
Γ1,2,h

g1,2,hvh dx
L(vh)

(2.13)

holds.

Approximation quality and convergence order on a fitted mesh

It is well known that the approximation quality and, hence, the order of convergence of the finite

element method with respect to the approximation error depends not only on the polynomial

degree of the basis functions but also on the computational mesh which has to resolve boundaries

and interfaces on mesh facets or edges. On a fitted mesh, the L2 and H1-semi approximation

Chapter 2: Solving PDE-based problems involving discontinuous features 17

Ω1

Ω2

ΓN
𝑛𝑛1,2

Ω

Γ1,2

ΓN

ΓD

ΓD

Figure 2.4 Setting for Example 2.2.

Nel infvh∈V 1
cg
∥u− vh∥L2(Ω) eoc infvh∈V 1

cg
∥u− vh∥H1(Ω) eoc

2× 42 0.021575 - 0.273396 -
2× 82 0.005449 1.9864 0.137909 0.9878
2× 162 0.001366 2.0000 0.069109 0.9989
2× 322 0.000342 2.0138 0.034574 1.0077
2× 642 0.000085 2.0568 0.017289 1.0350
2× 1282 0.000021 2.2524 0.008645 1.1608

Table 2.1 Approximation errors and estimated order of convergence for V 1
cg using a fitted mesh.

errors of the problem at hand can be estimated by

inf
vh∈Vm

cg

∥u− vh∥L2(Ω) ≤ c1h
m ∥u∥Hm(Ω1∪Ω2)

,

inf
vh∈Vm

cg

∥∇u−∇vh∥L2(Ω) ≤ c2h
m−1 ∥u∥Hm(Ω1∪Ω2)

,

(2.14)

(2.15)

for m ≥ 1. For illustration, we consider Example 2.2 for m = 1 on a uniform triangulation with

Nel = {2 × 42, 2 × 82, 2 × 162, 2 × 322, 2 × 642, 2 × 1282} elements so that the interface Γ1,2,h

align with facets of elements, i.e. Γ1,2,h = Γ1,2. The convergence order is then as expected, see

Table 2.1.

Approximation quality and convergence order on an unfitted mesh

If the triangulation is unfitted to the problem, the expected orders of convergence for the

approximation errors decreases. According to [29, Sec. 7.9.1], we expect the following estimates

inf
vh∈Vm

cg

∥u− vh∥L2(Ω) ≤ c1h
3
2 ∥u∥Hm(Ω1∪Ω2)

,

inf
vh∈Vm

cg

∥∇u−∇vh∥L2(Ω) ≤ c2
√
h ∥u∥Hm(Ω1∪Ω2)

.

(2.16)

(2.17)

18 Chapter 2: Solving PDE-based problems involving discontinuous features

Nel infvh∈V 1
cg
∥u− vh∥L2(Ω) eoc infvh∈V 1

cg
∥∇u−∇vh∥L2(Ω) eoc

2× 52 0.033778 - 0.603654 -
2× 92 0.014919 1.3902 0.470692 0.4233
2× 172 0.005953 1.4444 0.348421 0.4730
2× 332 0.002243 1.4711 0.253769 0.4780
2× 652 0.000820 1.4851 0.183075 0.4819
2× 1292 0.000296 1.4866 0.130949 0.4893

Table 2.2 Approximation errors and estimated order of convergence for V 1
cg using an unfitted mesh.

to hold for m ≥ 1 for the given example. Choosing Nel = {2 × 52, 2 × 92, 2 × 172, 2 × 332, 2 ×
652, 2 × 1292} as number of elements, the resulting mesh does not resolve the interface Γ1,2,h

and the numerical results confirm the expected error bounds, see Table 2.2.

2.2.2 The finite element method for time-dependent problems

Solving time-dependent problems with the finite element method is more complex since the

problem has to be discretized in both space and time. In principle, there are two concepts

available to tackle such problems, coupled space-time approaches [30] and the method of lines

[31, 32]. Roughly speaking, space-time methods treat the time as additional spatial dimension

and, thus, increase the dimension of the considered problem. For the numerical solution of time

dependent problems using this approach, we then have to discretize the problem in the space-

time domain which is usually done on so-called space-time slabs. Therefore, a conventional finite

element discretization for the spatial discretization is usually combined with a discontinuous

Galerkin time stepping scheme. In contrast to this, the methods of lines is based on successively

discretizing both the space and the time dimension. In fact, the method of lines comes with two

variants, the vertical method of lines and the horizontal method of lines, better known as Rothe’s

method. The vertical method of lines is based on leaving the time variable continuous and only

discretizing the problem in space. Thereby, a system of ordinary differential equations (ODEs) is

generated which can be solved using an explicit or implicit ODE-solver. The horizontal method

of lines discretizes the time first and results in a sequence of quasi-steady-state problems, which

can be solved using the finite element method.

While the use and implementation of a suitable discretization and solution technique as de-

scribed in the previous paragraph already requires some effort, considering time-dependent

problems with moving interfaces and boundaries is even more complex as we have to repre-

sent the boundaries during the solution process. In contrast to steady-state situations where

all boundaries and interfaces are fixed and often explicitly given, these quantities are usually

part of the solution when considering time-dependent problems. This is especially true for

multiphysics problems involving several subdomains. Therefore, we need methods to represent

boundaries and interfaces. In general, there are two types of methods, explicit interface tracking

Chapter 2: Solving PDE-based problems involving discontinuous features 19

approaches and implicit interface capturing approaches [33]. Both are very important concepts

used when tackling time-dependent problems.

Interface tracking: The explicit interface tracking method relies on representing an interface

as a polygonal line on mesh boundaries. Any movement of the interface described by an

equation is then resolved by moving the mesh accordingly. The most common approach to

track the interface is the arbitrary Lagrangian Eulerian (ALE) method [34]. Therein, the

time derivate is considered with respect to a deforming mesh configuration which results in a

modified convection term that additionally takes the mesh velocity into account. The obvious

advantage of interface tracking methods is that we always have a mesh fitted to the problem

and subdomains due to the representation of the interface by mesh boundaries. However, for

problems involving a large geometrical deformation, it might be necessary to include a remeshing

technique whose implementation can be complex and which is numerically expensive. Moreover,

tracking methods basically only move and, with limitations, evolve the interface that has to be

given by an initial configuration but cannot take into account topological changes that arise in

most multiphysics problems such as multiphase-flow or melting and solidification processes.

Interface capturing: In contrast to tracking methods, the interface capturing approach is

based on considering an indicator function, such as a signed distance function, on a fixed mesh

and define subdomains, e.g., by the sign of this function. As the interface and subdomains do

not dependent on the mesh boundaries, this approach is unfitted and quantities on intersected

elements have to somehow be approximated. While the simplest approximation is to assign each

element completely to one of the subdomains, more elaborated approaches use an average value

that may, for example, depend on the ratio of the subvolumes corresponding to each domain.

In general, interface capturing methods are easy to implement and offer a high flexibility, as

they can handle topological changes naturally. However, due to the fact that the mesh is not

fitted to the problem, only moderate convergence rates can be expected as exemplarily shown

for the steady-state heat equation in the previous section.

A concept that can be used within both approaches is adaptivity [35]. Usually, the concept of

adaptive finite element methods is used to automatically refine and coarsen a mesh to compute

a solution meeting a given error bound by using a posteriori error estimations. However, it can

also be used to refine the mesh based on geometrical data such as the position of the interface. In

regards to time-dependent problems, refining the mesh in the vicinity of the interface allows for

a better approximation of the local discontinuous feature. Unfortunately, the mesh refinement

often results in a lot of additional basis functions and degrees of freedom so that the size of the

corresponding discrete system can blow up.

20 Chapter 2: Solving PDE-based problems involving discontinuous features

2.3 A brief introduction to eXtended discretization methods

Due to the mentioned issues and limitations of conventional finite element methods, especially

for time-dependent multiphysics problems, the scientific community put a lot of effort in devel-

oping so-called eXtended discretization methods (XDMs). The core idea of eXtended discretiza-

tion methods is to decouple the computational mesh from the physical geometry by extending

or enriching the FEM-based approximation space instead of adapting the computational mesh.

Consequently, these methods belong to the class of unfitted methods. The enrichment of the

approximation space is based on a partition-of-unity concept and introduces additional basis

functions to accurately represented discontinuous features on meshes which are independent

from the respective (sub)domain geometry. For this to work, the approach takes advantage of a

priori known properties of the discontinuity, for example the type indicating whether a function

itself is discontinuous (strong discontinuity) or whether the gradient of a function is discon-

tinuous (weak discontinuity) and incorporates this knowledge into the extended approximation

space. In practice, boundaries and interfaces are usually represented using implicit interface

capturing approaches such as the level set method, described in Section 2.1.

2.3.1 A short historical background of unfitted finite element methods

While the first unfitted finite element methods have been developed and analyzed for Dirichlet

boundary conditions [36–38] a few decades ago, the development of numerical approaches to

solve such problems was only initiated in the mid of the 1990’s by [39, 40]. Therein, a partition-

of-unity method (PUM) has been used to include additional knowledge of the problem into the

function space. Based on this idea, the two (very similar) concepts, generalized finite element

method (GFEM) [41, 42] and eXtended finite element method (XFEM) [43, 44], were simulta-

neously developed with the essential difference that in XFEM only a subset of the degrees of

freedom and, hence, only parts of the domain is enriched. Since then various enrichment meth-

ods with sometimes only small differences have been developed and discussed in the literature,

see, e.g., [26, 45] for reviews. However, all methods can be roughly classified by the criteria [26]

whether

• the basis functions are mesh-free or mesh-based,

• the enrichment is extrinsic, meaning that new functions are added to the function space,

or intrinsic, i.e. (some) basis functions are replaced by other functions, and whether

• the enrichment is performed globally or locally.

In this thesis, we focus on the eXtended finite element method which uses an mesh-based

local extrinsic enrichment that is locally realized by the partition-of-unity concept. While

the eXtended finite element method was originally introduced to numerically tackle structural

Chapter 2: Solving PDE-based problems involving discontinuous features 21

mechanics problems where cracks are present, it has been successfully applied to various prob-

lems, e.g. solidification processes involving moving interfaces [46, 47] and two-phase flow [29].

Overviews of applications which have been numerically solved with this method can be found

in i.a. [26, 45, 48]. A consequence of decoupling mesh and geometry when using XFEM and

related methods is the rise of several challenges in regards to the numerics that have to be dealt

with. A brief summary including references to the significant articles is given in Section 2.3.3.

2.3.2 The eXtended finite element method

We present the idea of the eXtended finite element method using similar notations as in [24, 29,

49, 50]. Consider a situation as depicted in Section 2.2.1, that means we have an hold-all domain

Ω which is separated into two subdomains Ω1 and Ω2 by an interface Γ1,2 which, for the ease of

notation, we now denote with Γ in the remainder of this chapter. As before let Sh be a shape

regular mesh consisting of d-simplices with maximum diameter h = maxS∈Sh
diam(S) > 0 so

that
⋃
S∈Sh

= Ω̄. Since in general we cannot expect that an interface Γ coincides with facets of

elements, we request that the curvature of the interface is bounded and that the resolution of the

mesh near the interface is sufficiently high to prevent multiple intersections of an element edge,

see [49]. Furthermore, we introduce the following notation that will be used (and extended) in

the next chapters:

For any simplex S ∈ Sh, ΓS = Γ∩S denote the intersection segment of Γ in S, SΓ
h := {S ∈ Sh :

S ∩ Γ ̸= ∅} is the set of intersected elements, and ΩΓ :=
⋃
S∈SΓ

h
S is the corresponding domain.

Moreover, Si = S ∩ Ωi is the part of the element which belongs to Ωi, i = 1, 2.

Remark 2.2 (A comment on the notation). Please note that the notation used within this

section also remains valid if the discontinuity aligns with element boundaries. In fact, this is a

simpler situation as we may locally use the approach presented in the previous section and do

not necessarily have to enrich the respective elements.

Remark 2.3 (Approximation of the interface Γ). For the sake of clarity, we assume that the

interface is known and explicitly given in this section. In addition to this, we suppose that all

functions and integrals on the interface can be evaluated and computed exactly. Please note

that in real-world applications, the interface is often not only implicitly given and unknown

but also part of the solution, e.g., in two-phase flow or two-phase Stefan problems. Often,

the level set method, cf. Section 2.1, where the zero level set of a continuous scalar function

represents the location of the discontinuity is used for this purpose. For computing integrals

and evaluating functions on intersected cells, an approximation Γh of Γ of this zero level set is

constructed.

Let V FEM = span{vj}j∈N be a conventional finite element space on the triangulation Sh, where
{vj}j∈N with N = {1, . . . , NB} is the corresponding nodal basis and NB denotes the dimension

of V FEM. The fundamental idea of the eXtended finite element method is to define the index

22 Chapter 2: Solving PDE-based problems involving discontinuous features

set

Ñ := {j ∈ N : measd−1(Γ ∩ supp(vj)) > 0} (2.18)

of all basis functions whose support is intersected by Γ and enrich V FEM near the discontinuity

Γ with additional basis functions

ṽk := vk · ψ, k ∈ Ñ , (2.19)

using a so-called enrichment function ψ. With this, the extended discrete approximation space

is given by∗

Vh := span{vj}j∈N ⊕ span{ṽk}k∈Ñ . (2.20)

Aside from the location of the discontinuity, the choice of ψ obviously depends on the discontinu-

ous feature which has to be considered. In general, quantities can exhibit a strong discontinuity,

meaning that the function itself is discontinuous, or a weak discontinuity, i.e. the gradient of

a function is discontinuous. In literature, there are several enrichment functions introduced to

tackle different kinds of problems, see [26, 45] for an overview. However, the most common

approach to consider strong discontinuous features is based on the Heaviside function

ψH : Ω → R with ψH(x) := H(x) =

⎧⎪⎪⎨⎪⎪⎩
1, for x ∈ Ω2

0, else
, (2.21)

while for weak discontinuous features, the modified abs-enrichment [51]

ψabs : Ω → R with ψabs(x) :=
∑
j∈N

|d(x)|vj(x)−
⏐⏐⏐⏐ ∑
j∈N

d(x)vj(x)

⏐⏐⏐⏐ (2.22)

is usually used. This enrichment is based on the distance of a point x ∈ Ω to the discontinuity

Γ given by a function d : Ω → R.

Please note that although enrichment functions are usually globally defined on Ω, the introduced

enrichment is still local by construction since we only enrich basis functions vk with k ∈ Ñ , cf.

equation (2.19).

Remark 2.4. Over the last years, the term Cut Finite Element Method (CUTFEM) [52] has

become more and more popular. It summarizes methods that are based on duplicating elements

that are intersected by (unfitted) boundaries or interfaces and cut-off the conventional finite

element approximation space at these locations [49]. Such methods are essentially equivalent

to using XFEM with a Heaviside enrichment function.

∗Please note that for V FEM = V m
cg,h, we will have Vh ⊂ H1(Ω1 ∪ Ω2), but usually Vh ̸⊂ H1(Ω).

Chapter 2: Solving PDE-based problems involving discontinuous features 23

Nel infvh∈Vh ∥u− vh∥L2(Ω1∪Ω2)
eoc infvh∈Vh ∥∇u−∇vh∥L2(Ω1∪Ω2)

eoc

2× 52 0.004993 - 0.192204 -
2× 92 0.001650 1.8838 0.113583 0.8949
2× 172 0.000479 1.9447 0.062084 0.9498
2× 332 0.000129 1.9778 0.032262 0.9869
2× 652 0.000033 2.0111 0.016183 1.0178
2× 1292 0.000008 2.0674 0.007878 1.0503

Table 2.3 Approximation errors and estimated order of convergence for the enriched function space V 1
h

using an unfitted mesh.

Approximation quality and convergence order of the eXtended finite element

method

In contrast to the finite element method, the rates of convergence of the approximation errors

infvh∈Vh ∥u− vh∥L2(Ω1∪Ω2)
and infvh∈Vh ∥∇u−∇vh∥L2(Ω1∪Ω2)

do not depend on the location of

the interface when using the eXtended finite element method†. Consider the example from

Section 2.2.1 now using the eXtended finite element method, where the function space Vh is

generated by enriching V 1
cg,h. As the interesting cases are given when the mesh does not resolve

the interface Γ, cf. Remark 2.2, we compute the numerical solution for Nel = {2×52, 2×92, 2×
172, 2× 332, 2× 652, 2× 1292} and specify the approximation errors and orders of convergence

in Table 2.3. As expected, we get the same estimates as when using the finite element method

with a fitted mesh.

2.3.3 A brief overview of numerical challenges arising in unfitted methods

The fundamental idea of unfitted methods is to use uniform meshes and consider boundaries

and interfaces by adapting the discrete approximation space. This provides a very flexible and

powerful method that can be applied to a wide range of problems. However, consequences that

arise out of these approaches are that, firstly, the discrete formulation and analysis of problems

are much more complex compared to the fitted setting, and, secondly, that the implementation

of such unfitted methods is very extensive as there are a lot of additional numerical issues to

take into account. At this point, we want to briefly mention the challenges when using an

eXtended discretization method. Most of them are addressed and elaborated on in more detail

for the hierarchical eXtended finite element method in Section 3.3 and Section 4.3.

2.3.3.1 Discrete interface representation and approximation

Leaving the difficulty of solving time-dependent problems aside, which will be addressed later

and, instead, focusing on steady-state problems, a fundamental aspect to be considered con-

cerns discrete representation and approximation of the interface. This is due to the fact that in

†However, the approximation of the interface does indeed play an important role, cf. Section 2.3.3.1

24 Chapter 2: Solving PDE-based problems involving discontinuous features

practice boundaries and interfaces are often only given implicitly and, moreover, run indepen-

dently of the mesh boundaries. Hence, the construction of an explicit interface approximation

is mandatory to define discrete subdomains.

Suppose that, for example, an interface Γ is implicitly given by the zero level of a scalar function

on a triangulation that is sufficiently fine so that no element edge is intersected more than once,

cf. the assumptions in [49]. The most common approach to construct an explicit interface is

based on connecting the intersections points of Γ with the element edges by a linear segment.

While this linear representation can be easily constructed, it obviously does not provide good

approximation and convergence properties, especially in regards to problems that involve terms

related to second derivatives of the interface such as curvature.

A simple but useful extension of this approach has been developed in [29, Chap. 7.3], where an

additional mesh is introduced obtained by regularly refining the original triangulation. Assum-

ing that the interface is given by a quadratic level set function, the idea is to linearly interpolate

this function on the refined mesh and define the discrete interface Γh using planar intersection

segments while all quantities involving derivatives such as computing the normal or the curva-

ture are based on the quadratic function. While this leads to an improvement of the results,

the convergence rates are still not optimal.

Another possibility to represent the interface and boundaries discretely is to use a high-order

approximation of the interface such as quadratic or cubic. For this purpose, an approach

subdividing intersected elements into subcells with a so-called parametric or curved facet has

been developed in [53].

2.3.3.2 Subdivision and quadrature

The challenge of approximating the discrete interface is closely related to the task of performing

quadrature on intersected elements. While in the early works, a high order quadrature rule with

many quadrature points has often been used, which performs rather poorly, almost all recent

approaches subdivide elements and perform on the resulting subelements.

The subdivision of intersected simplicial elements is especially straightforward when the in-

tersection segment is approximated linearly. Then, one can either directly map the arising

subelements, that are triangles and quadrilaterals in 2D and tetrahedrons and wedges in 3D,

to the respective reference elements or use a scheme, see, e.g., [54], to further subdivide the

subelements to restore simplicial elements. The latter approach is especially convenient as only

the quadrature rules already required by the finite element method for non-intersected elements

have to be modified.

When using high-order approximations instead of a linear representation, an interface may

be arbitrarily curved inside an element so that corresponding subtriangulations and quadrature

Chapter 2: Solving PDE-based problems involving discontinuous features 25

approaches have to be based on isoparametric methods using reference elements that are higher-

order on only one facet. While these methods are numerically much more expensive and harder

to implement, the achieved convergence rates are (close to) optimal, see [53].

2.3.3.3 Essential boundary and interface conditions

A further consequence of the fact that physical boundaries and interfaces are, in general, not

resolved by the computational mesh is that a strong imposition of essential boundary and inter-

face conditions usually results in numerical issues, see e.g. [55]. Instead of a strong imposition,

it is advantageous to add these conditions to the discrete variational formulation, similar to

the way Neumann conditions are included. In principle, there are three concepts available to

weakly impose Dirichlet and interface conditions: the penalty method, the use of Lagrangian

multipliers, and Nitsche’s method.

• Penalty method: The idea of the penalty method, used in [46, 56], is to include bound-

ary conditions by adding discrete approximations of the conditions to the variational

formulation, which then are multiplied by a penalty parameter. While this does not in-

troduce additional unknowns to the problem, a drawback is that the equation, and hence

the linear system’s condition number, scales with the penalty parameter enforcing the

condition.

• Lagrangian multipliers: In contrast to the penalty method, using Lagrangian multi-

pliers to impose Dirichlet boundary conditions as introduced in [57], does add additional

unknowns to the problem. Moreover, the space of the multipliers has to be chosen carefully

to satisfy the ”inf-sup” condition [58].

• Nitsche’s method: Nitsche’s method [27] does not introduce additional unknowns and

can be considered as a consistent penalty method. There are two versions available, a

symmetric and a non-symmetric variant. Both versions of the method introduce a stabi-

lization parameter which is necessary to ensure inf-sup stability, see Section 2.3.3.4, and

which has an impact on the condition number of the discrete linear system. However, the

non-symmetric variant allows setting this parameter to 1. Since its original introduction,

Nitsche’s method has been extended and adapted to impose all kind of boundary and

interface conditions. It has been successfully used in a number of articles considering

different applications, see for example [29, 49].

An overview of the mentioned approaches applied to two-phase flow with mass transportation

is given in [50] and for a more general (but very brief) summary see [26] and the references

therein. In this thesis, we exclusively use Nitsche’s method, which will be presented in more

detail in Section 3.3.2.

26 Chapter 2: Solving PDE-based problems involving discontinuous features

2.3.3.4 Stability and conditioning issues

The most difficult challenges in regards to the eXtended finite element method and related

variants consist in guaranteeing inf-sup stability and avoiding ill-conditioning of the discrete

problem. We briefly mention the causes of the issues and touch on how to solve them. A

detailed overview can be found in [24, 50].

The inf-sup stability [59], a weaker condition as the so-called coercivity, is required in a certain

norm for the discrete bilinear form to ensure existence and uniqueness of a solution of the

problem. Moreover, this property can be used to derive and prove (optimal) a priori error

estimates of the discrete solution. This is mandatory for numerical approaches. For eXtended

discretization methods, the issue of defining discrete bilinear forms that are inf-sup stable is

caused by the intersections of interface and mesh. As an intersecting part of an element may be

very small, the terms for imposing interface or boundary conditions are usually not sufficiently

controlled within the weak formulation. As a consequence, an inverse inequality, which is

essential to prove inf-sup stability of the system, does not hold. In order to retain this property

and guarantee stability uniformly, we may have to introduce additional stabilization techniques.

While a stabilization technique is required for all methods that can be used to impose interface

and boundary conditions mentioned in the previous section, the Nitsche method is often the

method of choice. The main advantage of this approach is that it is not only consistent but

also stable

• independent of the choice of the stabilization parameter (non-symmetric variant), or

• for a sufficiently large stabilization parameter (symmetric variant),

if the averaging operator introduced in [49] is used. Unfortunately, depending on the con-

struction, the stability parameter, which also controls the error at the respective interface or

boundary and in many approaches depends on the length of the intersection segment of interface

and mesh, has a direct impact on the system’s condition number which scales with its mag-

nitude. Thus, preconditioning is crucial within the numerical implementation. More detailed

information is given in [50].

An additional stabilization method that can be used is the so-called ghost penalty approach

introduced in [60]. In this method, additional stabilization terms regarding the jump of the

gradient are added to control the condition number independently of the intersection between

mesh and discontinuity.

2.3.3.5 Discretization of time-dependent problems

A principal challenge of the eXtended finite element method is the discretization and solution

of time-dependent problems that involve moving or evolving interfaces. A good overview of

Chapter 2: Solving PDE-based problems involving discontinuous features 27

suitable methods is given in [50, Sec. 3.1.2]. In principle, there are two different techniques

available, space-time formulations and the method of lines, which both have been already

mentioned in Section 2.2.2.

To a certain extent, the natural approach to discretize problems involving discontinuities is

to use the concept of space-time elements. By considering the time as (additional) spatial

dimension, the problem is transformed into a d + 1 dimensional stationary problem. Just as

within the framework of conventional space-time finite elements, the resulting d+1 dimensional

domain is divided into so-called time slabs [61]. Time slabs are prisms resulting from considering

the domain over a time interval, and the problem is defined in variational formulation for these

time slabs that are decoupled by applying a discontinuous Galerkin method. While the literature

suggests that the numerical costs are more or less comparable to time stepping methods, using

this concept within eXtended discretization methods is rather complicated and challenging as

we need to implement a subdivision scheme for intersected elements. An extensive introduction

and description of space-time methods for the eXtended finite element method is given in [50].

When using the method of lines, there is a fundamental difference between conventional and

eXtended finite element methods, as pointed out in [62]. Within conventional methods, the

function space relies on the triangulation and there is an identification of mesh entities and

basis functions with the corresponding degrees of freedom. Therefore, the basis functions can

be considered as time independent. While this is obvious for methods using a fixed mesh,

it is also true for moving mesh approaches like the ALE method which considers evolutions

in time by introducing a mesh velocity and uses a parametrization of the function spaces.

Thereby, all quantities are evaluated on the same geometry. In contrast to this, enriched

basis functions of eXtended approximation spaces are time-dependent by construction since the

enrichment functions consider the movement of the discontinuity. Consequently, we can only

apply Rothe’s method to problems when using XFEM as we need to firstly discretize in time

and then in space. Therefore, it is important to point out that since the fundamental idea of the

method of lines is to use a finite difference approximation of the time derivative, this quantity

has to be sufficiently smooth with respect to time. While this is not necessarily the case in

problems involving discontinuities, most of the problems can be scaled to retain a continuous

time derivative. However, in any case no high-order approximations can be used, if the interface

moves.

2.3.3.6 Miscellaneous

Last but not least there are some practical issues when using the eXtended finite element

method. Since an enriched function does not generally fulfill the Kronecker-delta property

meaning that for uh ∈ Vh, uh(xj) ̸= uj , j ∈ N , the implementation of nodal interpolation

onto the enriched approximation space Vh is not straight forward. An alternative is to use the

28 Chapter 2: Solving PDE-based problems involving discontinuous features

L2-projection instead. Another aspect is that routines used for visualizing computed results

have to be extended to correctly represent enriched elements containing jumps and kinks.

Chapter 3

A hierarchical eXtended finite element

method for multiphysics problems

Any modeling and discretization approach for multiphysics problems has to be able to consider

arbitrary geometries defined by multiple interfaces at which different discontinuous features are

present. While an approach based on the eXtended finite element method in combination with

multiple level set functions is very flexible and independent from the problem’s geometry, we

need to resolve two main issues that concern, the domain decomposition and the enrichment

scheme. The level set method as described in Section 2.1, using one indicator function, only

allows for the decomposition of a domain into two subdomains. Hence, more level set functions

are needed to separate a given domain into several subdomains and represent the boundaries

by zero level sets. When doing this, complex situations such as multi-junctions can arise and

additional effort is necessary to ensure that the resulting method is geometrically consistent, that

is, no voids or overlapping domains arise. In order to sharply represent discontinuous features

on arbitrary evolving subdomains, any introduced enrichment scheme has to be robust so that

the generated eXtended approximation spaces and the discretization yields stable systems of

equations, even if basis functions and the corresponding degrees of freedom have to be enriched

by multiple discontinuities.

Inspired by [25], we present a robust and flexible approach that is based on introducing a

hierarchical order to the problem. Therefore, a hold-all domain is decomposed by multiple

level set functions that are hierarchically ordered. Using this order, which can be based on

modeling assumptions or can be artificially introduced, the problem is reformulated and the

approximation spaces are extended by using Heaviside enrichment for each discontinuity. The

hierarchical level set method is a flexible domain decomposition scheme that is geometrically

consistent and can represent all possible domain changes. Based on this decomposition, the

Heaviside enrichment scheme provides a robust extension of the approximation space and allows

to accurately consider arbitrary evolving discontinuities. We begin this chapter by introducing

the general problem setting by

29

30 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

Ω1

Ω2

Ω2

Ω1

Ω3
Ω4

Ω5

Γ1,2

Γ1,2

Γ1,2

Γ1,3

Γ2,3

Γ2,3
Γ3,4

Γ4,5

𝑛𝑛1,2

𝑛𝑛1,3

𝑛𝑛2,3
𝑛𝑛3,4

𝑛𝑛4,5

Ω

𝜕𝜕Ω

Figure 3.1 Exemplary setting as described in Definition 3.1.

Definition 3.1 (General domain setting). Let Ω ⊂ Rd be a physical domain with polyg-

onal boundary ∂Ω, consisting of Ndom pairwise disjoint subdomains Ωi(t), for t ∈ [t0, tf],

i = 1, . . . , Ndom, that are separated by sharp and sufficiently smooth internal boundaries called

interfaces Γi,l(t) := interiord−1

Ä
Ω̄i ∩ Ω̄l

ä
, with i ̸= l. At the interfaces Γi,l, the outwards-

pointing unit normal vectors are given by n⃗i,l(t) = n⃗i(t) = −n⃗l(t) and the outward-pointing

normal vector to ∂Ω is denoted by n⃗, with n⃗|∂Ω∩∂Ωi
= n⃗i.

A sketch of the setting described in Definition 3.1 for Ndom = 5 domains is given in Figure 3.1.

We introduce the some notation in

Definition 3.2 (Operators for functions featuring a discontinuity). For a quantity u : Ω → R
which is sufficiently smooth on Ωi, i = 1, . . . , Ndom, the notation u|Ωi in general denotes the

restriction of u onto the subdomain Ωi. At an interface Γi,l, i ̸= l, this notation is short

for
(
u|Ωi

)
Γi,l

and denotes (in trace sense) the limiting value of a quantity given in Ωi when

approaching an interface Γi,l, i ̸= l.

In general, all quantities involved in a (multiphysics) problem may be discontinuous or have a

discontinuous derivative at any interface Γi,l. Hence, we introduce some operators in

Definition 3.3 (Operators for functions featuring a discontinuity). For a scalar quantity

u : Ω → R, which is sufficiently smooth on Ωi, i = 1, . . . , Ndom, but can feature a disconti-

nuity across an interface Γi,l, we define for x ∈ Γi,l, for all i < l,

• Ju(x)K =
(
u|Ωi

)
Γi,l

−
(
u|Ωl

)
Γi,l

(jump operator),

• {u(x)} = wi
(
u|Ωi

)
Γi,l

+ wl
(
u|Ωl

)
Γi,l

(weighted average operator), and

• ⟨u(x)⟩ = wl
(
u|Ωi

)
Γi,l

+ wi
(
u|Ωl

)
Γi,l

(cross-over weighted average operator),

with 0 ≤ wi, wl ≤ 1 and wi + wl = 1. The weights wi, wl can be chosen arbitrarily, however,

they impact the stability of a discrete system, see [50, Sec. 2]. In regard to the jump of a

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 31

product, we will make use of the relation

JuvK = JvK{u}+ ⟨v⟩JuK, (3.1)

which can be easily verified. Please note that although we defined the operators and relation

for scalar quantities, their definition can also be used for vector-valued quantities simply by

component-wise consideration.

Before we present the hierarchical eXtended finite element method, we want to point out the

complexity arising when multiple subdomains are involved in the problem which are separated

by interfaces that feature different conditions. For this purpose, we consider an enhanced version

of the Example 2.1.

3.1 Analytical example involving multiple subdomains

Following Definition 3.1 with Ndom = 3, let Ω ⊂ Rd be a fixed domain that is polygonally

bounded with ∂Ω = ΓD ∪ΓN and consists of the disjoint subdomains Ω1, Ω2, and Ω3 separated

by sharp and sufficiently smooth interfaces Γ1,2, Γ1,3, and Γ2,3 with outward-pointing normal

vectors n⃗1,2, n⃗1,3, and n⃗2,3. Now consider the problem

Example 3.1 (Steady-state heat equation). For given data which is sufficiently smooth, find

u : Ω → R s.t. it solves the problem given by

ξu−∇ · (κ∇u) = f in Ω1 ∪ Ω2 ∪ Ω3,

u = gD on ΓD,

−κ∇u · n⃗ = gN on ΓN,

Jκ∇uK · n⃗1,2 = g1,2 on Γ1,2,

JuK = q1,2 on Γ1,2,

Jκ∇uK · n⃗1,3 = g1,3 on Γ1,3,

JuK = q1,3 on Γ1,3,

u|Ω2 = g2 on Γ2,3,

u|Ω3 = g3 on Γ2,3

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

for a situation similar to Figure 3.2.

32 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

Ω1

Ω2

𝜕𝜕Ω
𝑛𝑛1,2

Ω
Ω1

Ω3

Γ1,3Γ1,2

Γ2,3

𝑛𝑛1,2 𝑛𝑛1,3

𝑛𝑛2,3

Figure 3.2 Exemplary setting for Example 3.1.

Variational formulation and weak solution

In the following, we want to define a weak formulation and show that there exists a unique

solution to the problem at hand. We start by introducing

U := {v ∈ H1(Ω1 ∪ Ω2 ∪ Ω3) : v = gD on ΓD, v|Ω2 = g2 on Γ2,3, v|Ω3 = g3 on Γ2,3,

JvK = q1,2 on Γ1,2, JvK = q1,3 on Γ1,3 }
(3.11)

and

V := {v ∈ H1(Ω1 ∪ Ω2 ∪ Ω3) : v = 0 on ΓD, v = 0 on Γ2,3,

JvK = 0 on Γ1,2, JvK = 0 on Γ1,3 }.
(3.12)

The weak formulation of Example 3.1 is then given by: Find u ∈ U such that for all v ∈ V the

integral identity∫
Ω1∪Ω2∪Ω3

(ξuv + κ∇u · ∇v) dx =

∫
Ω1∪Ω2∪Ω3

fv dx−
∫
ΓN

gNv dx

+

∫
Γ1,2

g1,2v dx+

∫
Γ1,3

g1,3v dx
(3.13)

holds, where we assume that 0 ≤ ξ ∈ R, f ∈ L2(Ω1 ∪ Ω2 ∪ Ω3), gN ∈ L2(ΓN), g1,2 ∈ L2(Γ1,2),

g1,3 ∈ L2(Γ1,3), and κ ∈ L∞(Ω), with 0 < a < κ, a ∈ R.

Any function u ∈ U satisfying equation (3.13) for all v ∈ V is called weak solution of Exam-

ple 3.1. Unfortunately, U is not a Hilbert space and U ̸= V , so we can not use the integral

identity to test with the solution itself to gain important estimates and apply the theorem of

Lax-Milgram.

Hence, we first introduce the following (weak) auxiliary problem for ũ, v ∈ V

∫
Ω1∪Ω2∪Ω3

ξũv dx+ κ∇ũ · ∇v dx = −
∫
Ω1∪Ω2∪Ω3

(ξwv + κ∇w · ∇v) dx

+

∫
Ω1∪Ω2∪Ω3

fv dx−
∫
ΓN

gNv dx

+

∫
Γ1,2

g1,2v dx+

∫
Γ1,3

g1,3v dx,

(3.14)

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 33

where we assume that it is w ∈ H1(Ω1 ∪ Ω2 ∪ Ω3) and that all other functions have the

same regularity as before. With this assumptions, the theorem of Lax-Milgram can be applied

to equation (3.14) saying that there is a unique solution ũ ∈ V of equation (3.14). This

motivates us to tackle Example 3.1 as we only have to find a function w ∈ H1(Ω1 ∪Ω2 ∪Ω3) so

that the conditions given by equation (3.3), equation (3.6), equation (3.8), equation (3.9), and

equation (3.10) hold.

Assuming Γi,l ∩ ΓD = ∅ for 1 ≤ i < l ≤ 3, gD ∈ H
1
2 (ΓD), g2, g3 ∈ H

1
2 (Γ2,3), q1,2 ∈ H

1
2 (Γ1,2),

and q1,3 ∈ H
1
2 (Γ1,3), we introduce the extensions

ĝD : ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 → R with ĝD :=

⎧⎪⎪⎨⎪⎪⎩
gD, on ΓD

0, else
, (3.15)

ĝ2 : ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 → R with ĝ2 :=

⎧⎪⎪⎨⎪⎪⎩
g2, on Γ2,3

0, else
, (3.16)

ĝ3 : ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 → R with ĝ3 :=

⎧⎪⎪⎨⎪⎪⎩
g3, on Γ2,3

0, else
, (3.17)

q̂1,2 : ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 → R with q̂1,2 :=

⎧⎪⎪⎨⎪⎪⎩
q1,2, on Γ1,2

0, else
, (3.18)

q̂1,3 : ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 → R with q̂1,3 :=

⎧⎪⎪⎨⎪⎪⎩
q1,3, on Γ1,3

0, else
, (3.19)

and require

w1 := (ĝD) ∈ H
1
2
Ä
interiord−1

Ä
Γ̄1,2 ∪ Γ̄1,3 ∪

Ä
∂Ω1 ∩ Γ̄D

äää
,

w2 :=
Ä
ĝD − q̂1,2 + ĝ2

ä
∈ H

1
2
Ä
interiord−1

Ä
Γ̄1,2 ∪ Γ̄2,3 ∪

Ä
∂Ω2 ∩ Γ̄D

äää
,

w3 :=
Ä
ĝD − q̂1,3 + ĝ3

ä
∈ H

1
2
Ä
interiord−1

Ä
Γ̄1,3 ∪ Γ̄2,3 ∪

Ä
∂Ω3 ∩ Γ̄D

äää
,

(3.20)

(3.21)

(3.22)

so that there exists extensions ŵ1 ∈ H1(Ω1), ŵ2 ∈ H1(Ω2), and ŵ3 ∈ H1(Ω3), see [63]. Intro-

ducing their trivial extensions w̃1, w̃2, w̃3 ∈ H1(Ω1 ∪ Ω2 ∪ Ω3), we now can define the function

w := w̃1 + w̃2 + w̃3 ∈ H1(Ω1 ∪ Ω2 ∪ Ω3).

Remark 3.4. The assumptions in equations (3.20) to (3.22) for the extensions defined in equa-

tions (3.15) to (3.19) concern the compatibility at the boundaries. In regards to applications,

guaranteeing the compatibility of boundaries can be challenging, especially when multiple-

junctions arise. We will address this aspect later.

34 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

Let ũ ∈ V be the weak solution of equation (3.14), we define u := ũ + w and see that (in the

sense of traces)

u|ΓD
= ũ|ΓD

+ w|ΓD
= 0 + g̃D|ΓD

= gD,

JuK|Γ1,2 = Jũ+ wK|Γ1,2 = JũK|Γ1,2 + JwK|Γ1,2 = 0− (−q̃1,2|Γ1,2) = q1,2,

JuK|Γ1,3 = Jũ+ wK|Γ1,3 = JũK|Γ1,3 + JwK|Γ1,3 = 0− (−q̃1,3|Γ1,3) = q1,3,

u2|Γ2,3 = ũ2|Γ2,3 + w2|Γ2,3 = g̃2|Γ2,3 = g2,

u3|Γ2,3 = ũ2|Γ2,3 + w3|Γ2,3 = g̃3|Γ2,3 = g3,

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Therefore, u ∈ U and u obviously solves equation (3.13) so that we can apply Lax-Milgram

which gives us the existence of a unique solution of Example 3.1 under the above assumptions.

Remark 3.5. If we drop the assumption that Γi,l∩ΓD = ∅ for 1 ≤ i < l ≤ 3, some modifications

concerning the jumps q1,2 and q1,3 and, hence, the functions w1, w2, and w3 are necessary:

First of all we introduce γ1, γ2 ∈ H
1
2 (Γ1,2) with γ1 + γ2 = q1,2 and γ3, γ4 ∈ H

1
2 (Γ1,3) with

γ3 + γ4 = q1,3 and define the extensions γ̂1, γ̂2, γ̂3, γ̂4 : ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 → R similar as in (3.15)

to (3.19). Instead of conditions (3.20) to (3.22) we now request

w1 := (ĝD + γ̂1 + γ̂3) ∈ H
1
2
Ä
interiord−1

Ä
Γ̄1,2 ∪ Γ̄1,3 ∪

Ä
∂Ω1 ∩ Γ̄D

äää
,

w2 := (ĝD − γ̂2 + ĝ2) ∈ H
1
2
Ä
interiord−1

Ä
Γ̄1,2 ∪ Γ̄2,3 ∪

Ä
∂Ω2 ∩ Γ̄D

äää
,

w3 := (ĝD − γ̂4 + ĝ3) ∈ H
1
2
Ä
interiord−1

Ä
Γ̄1,3 ∪ Γ̄2,3 ∪

Ä
∂Ω3 ∩ Γ̄D

äää
,

(3.28)

(3.29)

(3.30)

and choose the corresponding extensions that can be used to construct u := ũ + w such that

u ∈ U satisfies equation (3.13).

3.2 Domain decomposition using multiple level set functions

When considering analytical or numerical problems, the interfaces and boundaries Γi,l are

usually represented by zero levels of (explicitly given) indicator functions or by an explicit

parametrization. The level set method briefly presented in Section 2.1 is the most common

approach to describe discontinuities and their evolution in time. However, as one level set func-

tion can only separate a given domain into two subdomains, multiple level set functions are

required to describe settings involving more than two subdomains.

3.2.1 Brief overview of methods based on multiple level set functions

The most straightforward approach to describe multiphase situations using the level set method

is to introduce one indicator function for each phase. One of the first works considering triple-

junctions is [64], where all level set functions are considered separately and a reassignment step

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 35

is performed afterwards to regain geometric consistency. This work is further extended in [65]

in which the interface’s motion depends on surface tension and bulk energies. In [66], a similar

approach based on the same early work is presented. However, all methods still include model

restrictions to prevent overlapping or voids between the domains.

While there have been various approaches proposed in the meantime, to the best of the author’s

knowledge, the issue of getting a geometrically consistent method is still usually considered by

a post-processing step after moving the level set function. Instead of addressing this aspect,

the approaches usually focus on the numerical efficiency. As the oldest approaches use one

level set function to describe each domain individually, a lot of redundancies are introduced.

In order to decrease the redundancies, some articles such as [67] introduces approaches where

level set functions are used to identify the domains they separate. Thereby, the number of

level set functions can be significantly reduced. While the proposed method is not immune to

overlapping domains or the generation of voids, it does decreases the number of critical points.

In contrast to the mentioned articles, [25] proposes a simple but effective strategy to avoid the

aforementioned problems by introducing a hierarchy among the indicator functions. Inspired

by this work, we present a hierarchical level set method that allows to decompose any domain

and automatically retains the geometric consistency when the subdomains evolve in time.

Remark 3.6 (Defining complex domains using multiple level set functions). The level set method

is an often used approach to describe and construct domains that are (mostly) independent of

the underlying computational mesh. In regards to single-phase problems, multiple level set

functions in combination with boolean operations can also be used to define very complex

domains, see [24, Appendix A] for examples. Therefore, it is widely used within the field of

constructive solid geometry (CSG). In this context, a first level set function, usually referred

to as master function defines the fundamental domain while slave functions remove parts of

the domain defined by the master function. An exmaple of this technique is used in [68] to

automatically generate high-order meshes for curved surfaces.

3.2.2 Domain decomposition by using a hierarchical level set method

We start this paragraph with a short motivation to emphasize the method’s idea and its gen-

erality:

Motivation 3.1. [Domain decomposition with hierarchical level set functions.] Consider a

melting process of some workpiece in a gas atmosphere where we, for illustration purposes, as-

sume that all quantities and boundaries are known for all t ∈ [t0, tf]. Given a hold-all domain

Ω that consists of three subdomains, the surrounding gas atmosphere Ω1(t), the solid material

Ω2(t), and the molten material Ω3(t), the idea of the hierarchical level set method is to formulate

the problem specifically for the given scenario to provide a characterization of the subdomains

Ωi(t) that is geometrically consistent also with respect to their evolution in time. Therefore,

36 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

the domain setting and the physics are used to introduce a hierarchy and describe the problem

as follows: Given a hold-all domain Ω and the workpiece geometry Γ1(t), we first define the

surrounding gas atmosphere Ω1(t) by introducing an indicator function φ1 : Ω → R (a signed

distance function to the work piece geometry) whose zero level set Γ1(t) (the work piece bound-

ary) separates Ω into Ω1(t) and Ωc
1(t), so that Ω = Ω1(t) ∪ Ωc

1(t) ∪ Γ1(t). Now, we introduce a

second indicator function φ2 : Ω → R which, restricted to Ωc
1(t), corresponds to a signed distance

function to the melting temperature um whose zero level set Γ2(t) (the solid-liquid interface) sep-

arates Ωc
1(t) into a solid part Ω2(t) and the remaining domain Ωc

2(t), which in this case is the

molten material Ω3(t). In total, we have Ω = Ω1(t) ∪ Γ1(t) ∪ Ω2(t) ∪ Γ2(t) ∪ Ω3(t) and the

evolution of all subdomains is coupled. Since the zero level set Γ2(t) of the second indicator

function φ2(·, t) has an effect only on the domain Ωc
1(t)

∗, where Ω1(t) is defined by φ1(x, t)

respectively Γ1(t), we say that φ1 is of higher hierarchy than φ2.

The presented idea can be generalized and used to decompose any domain into subdomains.

Recall the situation as depicted in Definition 3.1, that is we have a hold-all domain Ω ⊂ Rd

with sufficiently smooth boundary consisting of up to Ndom pairwise disjoint subdomains Ωi(t),

i = 1, . . . , Ndom, for t ∈ [t0, tf], which are separated by sharp and sufficiently smooth internal

boundaries Γi,l̃(t) = interiord−1

Ä
Ωi(t) ∩ Ωl̃(t)

ä
, with i < l̃.

We can describe this scenario by introducing multiple level set functions that are hierarchi-

cally ordered with the following constructive approach: For i = 1, . . . , Ndom − 1, let φi ∈
C1
Ä
Ω× (t0, tf)

ä
∩ C0(Ω̄× [t0, tf]) be such that the following conditions are fulfilled:

(Cond. 1) φi|Ωi < 0,

(Cond. 2) φi|Ωl̃
> 0 for all l̃ > i, and

(Cond. 3) φi|Γi = 0 with Γi(t) :=
⋃
l̃>i Γi,l̃(t).

The domains Ωi(t) then can be reconstructed by

Ωi(t) :=

⎧⎨⎩x ∈ Ω : φi(x, t)H(−φi(x, t))
i−1∏
l=1

H(φl(x, t)) < 0

⎫⎬⎭ , i = 1, . . . , Ndom − 1,

ΩNdom
(t) :=

⎧⎨⎩x ∈ Ω :
Ndom−1∏
l=1

H(φl(x, t)) = 1

⎫⎬⎭ ,
(3.31)

with

H(φi(x, t)) :=

⎧⎪⎪⎨⎪⎪⎩
1, for φi(x, t) > 0

0, else
, i = 1, . . . , Ndom − 1, (3.32)

∗The level set function φ2(·, t), which is related to the temperature u(·, t), is of course also defined on Ω1(t).
However, the melting temperature um corresponding to the melting temperature of the workpiece material does
not cause phase transitions in the gas atmosphere. Hence, u|Ω1 does not have a discontinuous feature at Γ2(t).

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 37

Ω1Ω2

Ω3 Ω4

Ω4

Ω5

(a) Setting.

Γ2

�Γ2 ∖ Γ2

Γ1

�Γ4 ∖ Γ4

Γ3

Γ4

�Γ4 ∖ Γ4

Γ4

(b) Domain decomposition using hier-
archical level set functions.

Figure 3.3 Domain decomposition using hierarchical level set functions.

denoting the Heaviside function with respect to φi and
∏
l∈∅H(φl(x, t)) = 1 as the empty

product.

We call the domains and level set functions hierarchically ordered and say that for l < i the

function φl is of higher or upper hierarchy than φi, since by this construction, φi has no influence

on quantities in the domain
⋃
l<iΩl but only on quantities in the remaining part. This is because

for x ∈ ⋃l<iΩl, there is one index k ∈ {1, . . . , i−1} with x ∈ Ωk. Due to (Cond. 1), this implies

φk(x) < 0 as well as H(φk(x)) = 0 and, hence,
∏i−1
l=1H(φl(x, t)) = 0. By contrast, we have∏i−1

l=1H(φl(x, t)) = 1 for x ∈
(⋃

l<iΩl
)c.

Since there are no requirements for φi on
⋃
l<iΩl other than the regularity φi ∈ C1(Ω ×

(t0, tf)) ∩ C0(Ω̄ × [t0, tf]), it is not necessarily Γi = Γ̃i, where Γ̃i denotes the zero level of φi,

but only Γi ⊆ Γ̃i. Therefore, we use the same idea as in equation (3.31) and characterize Γi for

i = 1, . . . , Ndom − 1† by

Γi(t) :=

⎧⎨⎩x ∈ Ω : φi(x, t) = 0 ∧
i−1∏
l=1

H(φl(x, t)) > 0

⎫⎬⎭
=

⎧⎨⎩x ∈ Γ̃i :
i−1∏
l=1

H(φl(x, t)) > 0

⎫⎬⎭ .
(3.33)

Please note that this approach provides us with a straightforward strategy to create any required

decomposition that is sufficiently smooth of a given hold-all domain Ω into subdomains Ωi, cf.

Figure 3.3. This is because we only have to introduce a (potentially artificial) hierarchy of

domains and boundaries appropriate to the given problem and separate the domains using the

presented scheme.

Example 3.2 (Creating domains using the hierarchical level set method). Consider the domain

Ω = [0, 1]2 ⊂ R2 with ΓD = (0, 1)×{0} and ΓN = ∂Ω\ΓD that consists of Ω1 = (0, 1)× (0, 0.5),

†As one interface separates two domains, we have one interfaces less than there are domains.

38 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

(a) Setting in Example 3.2. (b) Domain decomposition using hier-
archical level set functions.

Figure 3.4 Setting for Example 3.2 and domain decomposition using hierarchical
level set functions.

Ω2 = (0, 0.5) × (0.5, 1) and Ω3 = (0.5, 1) × (0.5, 1) separated by the interfaces Γ1,2 = (0, 0.5) ×
{0.5}, Γ1,3 = (0.5, 1)× {0.5}, and Γ2,3 = {0.5} × (0.5, 1).

We can use the hierarchical level set method to describe this setting, which may describe the

initial configuration of a problem involving evolving domains, by introducing φ1(x) = y − 0.5

with Γ1 = (0, 1)×{0.5} = Γ̃1 and φ2(x) = x−0.5 with Γ2 = {0.5}×(0.5, 1) ⊂ Γ̃2 = {0.5}×(0, 1).

Both level set functions clearly satisfy the conditions (Cond. 1) to (Cond. 3) and equations (3.31)

and (3.33). This setting is illustrated in Figure 3.4.

Remark 3.7 (A priori knowledge for time dependent problems with evolving subdomains). The

presented, constructive approach is obviously based on an a priori study of the problem at

hand in regards to how many subdomains can evolve, the causes of their evolution, and how

the subdomains are related. As this information is already necessary to model the process, no

additional knowledge is required and all problems can be formulated using this idea. Also note

that although this a priori knowledge simplifies the matter significantly, we could additionally

include a method to rearrange the hierarchies on the fly within the implementation of this

approach. However, this is numerically expensive as all data has to be rearranged, too.

Remark 3.8 (Reformulation of problems to fit into the hierarchical setting). (Almost) all PDE

problems involving different domains and/or discontinuities can be reformulated to introduce a

hierarchical order into the model. Usually, this hierarchical order is motivated straight-forward

by physical phenomena but one can also introduce an artificial hierarchy. An example for prob-

lems where the order is physically motivated are applications involving different states of matter

that are defined by temperature levels. In contrast to this, applications considering material’s

grain growth can be handled by introducing an arbitrary hierarchy among the different grains.

Remark 3.9 (A comment on the method’s consistency in regards to the geometry and physics).

The presented hierarchical level set method is geometrically consistent by construction. How-

ever, this property comes at a certain price: By defining multiple interfaces by the same zero

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 39

level set of an indicator function, see (Cond. 3), the approach automatically smoothens the con-

ditions or velocity fields, which may result from different physical phenomena, at the merging

points of interfaces. However, this is not a specific drawback of the proposed method but a

more general issue since, when modeling multiple junctions, the problem usually tends to have

more conditions than degrees of freedom at this point. Therefore, numerical approaches usually

have to choose one condition while neglecting others, see e.g. [13].

3.3 A hierarchical eXtended finite element method

Using the introduced hierarchical representation of the subdomains, boundaries and inter-

faces, we now address the enrichment of discrete approximation spaces. Usually, multiphysics

problems involve several domains and therefore discontinuities so that an appropriate dis-

crete approximation space has to be multiple-enriched using different enrichment functions

ψi, i = 1, . . . , Ndom − 1 that are, in particular, based on the discontinuities’ location. Since the

problem can in general involve strong and weak discontinuous features, we could either

(1) allow for completely different enrichments for weak and strong discontinuities, e.g. the

mod-abs enrichment for the first and Heaviside enrichment for the latter, or

(2) use an enrichment scheme primarily developed for considering strong discontinuities and

include additional conditions to enforce continuity at the corresponding interfaces.

As we are interested in developing a general approach to numerically compute solutions of

multiphysics problems using the concept of automated code generation, we choose the second

approach and introduce the hierarchical Heaviside enrichment which is combined with Nitsche’s

method to capture all arising discontinuous features. In the following, we use the setting and

notation as in Section 2.3.2; that is, we have a shape regular mesh Sh>0 with
⋃
S∈Sh

= Ω̄ and

a corresponding (standard) finite element space V FEM with basis {vj}j∈N appropriate for the

given problem. In addition, we assume that the triangulation is sufficiently fine so that any

discontinuity does not intersect a mesh edge more than once.

For the sake of a simplified presentation, we start by considering the enrichment for steady-state

situations. In Section 3.3.3, we comment on how to handle problems that are time-dependent

and involve moving or evolving interfaces.

3.3.1 Hierarchical Heaviside enrichment

Let φi, i = 1, . . . , Ndom − 1, be hierarchically ordered level set functions with zero level sets Γ̃i

as introduced in Section 3.2.2 separating a domain Ω into Ndom disjoint subdomains Ωi. We

assume that all Γ̃i are explicitly given, cf. Remark 2.3, to neglect the issue of constructing a

40 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

discrete approximation. The discontinuities are represented by Γi which are each characterized

as in equation (3.33).

For the construction of a suitable discrete approximation space, we define the hierarchical

Heaviside-type enrichment functions ψi : Ω → {0, 1} by

ψi(x) :=
i∏
l=1

H(φl(x)), i = 1, . . . , Ndom − 1 (3.34)

and introduce the sets

Ni := {j ∈ N : measd−1(Γi ∩ supp(vj)) > 0}, i = 1, . . . , Ndom − 1, (3.35)

containing the indices of all basis functions {vj}j∈N of V FEM whose support is intersected by Γi.

Then, the basis functions that are added for considering the i-th discontinuity while respecting

all upper hierarchy levels are constructed by

vi,k := ψi · vk, k ∈ Ni. (3.36)

and the resulting discrete approximation space is given by

Vh := span{vj}j∈N
= V FEM

⨁
i=1,...,Ndom−1

span{vi,k}k∈Ni
= V Γi

,
(3.37)

where all elements uh ∈ Vh have the structure

uh =
∑
j∈N

ujvj +
Ndom−1∑
i=1

Ñ∑
k∈Ni

ui,kvi,k

é
= uh · vh, (3.38)

with

uh = [u1, . . . , u|N |
std. coefficients

, u1,1, . . . , u1,|N1|
coefficients for Γ1

, . . . , uNdom−1,1, . . . , uNdom−1,|NNdom−1|
coefficients for ΓNdom−1

]T
(3.39)

and

vh = [v1, . . . , v|N |
std basis functions

, v1,1, . . . , v1,|N1|
basis functions for Γ1

, . . . , vNdom−1,1, . . . , vNdom−1,|NNdom−1|
basis functions for ΓNdom−1

]T ,
(3.40)

where Ni denotes the respective set of enriched basis functions and |Ni| its cardinality. Hence,

the enriched basis functions and the corresponding coefficients are just as hierarchically ordered

as the level set functions. In regards to the matrix A that arises when a problem given by

a(uh, vh) = L(vh) is written as linear system A · u = b, the hierarchical order results in a block

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 41

scheme

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Astd×std AΓ1×std AΓ2×std AΓNdom−1×std

Astd×Γ1 AΓ1×Γ1 AΓ2×Γ1 AΓNdom−1×Γ1

...
...

...
...

Astd×ΓNdom−1
AΓ1×ΓNdom−1

AΓ2×ΓNdom−1
. AΓNdom−1×ΓNdom−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.41)

with

Astd×std =
(
a(vj , vl)

)
j,l∈N

,

AΓi×std =
(
a(vi,k, vj)

)
j∈N , k∈Ni, i∈{1,...,Ndom−1}

,

Astd×Γi
=
(
a(vj , vi,k)

)
j∈N , k∈Ni, i∈{1,...,Ndom−1}

,

AΓi×Γl
=
(
a(vi,k, vl,k̃)

)
k∈Ni, k̃∈Nl, i,l∈{1,...,Ndom−1}

.

(3.42)

Due to the hierarchical construction, every level set function introduces its own enrichment via

equation (3.34). This is also advantageous in regards to the linear independency of the discrete

system with respect to enriched basis functions vl with measd−1(Γi ∩ supp(vl)) < ϵ ≪ |S|,
S ∈ Sh, see Section 4.3.

Example 3.3 (Representation of a discontinuous function). On the domain Ω = [0, 1]2 ⊂ R2

subdivided by the hierarchical level set functions φ1(x) = y − 0.5 and φ2(x) = x − 0.5 into

Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Γ1,2 ∪ Γ1,3 ∪ Γ2,3, we want to represent the piecewise constant function

κ(x) = κi on Ωi, i = 1, 2, 3, (3.43)

see Figure 3.5(a), using the hierarchical eXtended finite element method. While the obvious

choice of the approximation space which has to be enriched would be V 0
dg,h, which is defined in

(2.10), we choose V FEM = V 1
cg,h, cf (2.9), instead for illustration purposes. Hence, it is

Vh = {vh ∈ C0(Ωi) : vh|S∩Ωi ∈ P1(S ∩ Ωi), ∀S ∈ Sh, i = 1, 2, 3}. (3.44)

Choosing a uniform triangulation Sh consisting of 2×52 elements, the index set of the standard

basis functions {vj}j∈N is given by

N = {1, . . . , 36}, (3.45)

cf. Figure 3.5(b), the index set of basis functions enriched by Γ1 is given by

N1 = {13, . . . , 24}, (3.46)

42 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

𝜅𝜅 = 𝜅𝜅1

𝜅𝜅 = 𝜅𝜅2 𝜅𝜅 = 𝜅𝜅3

(a) Setting in Example 3.3.

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6

𝑣𝑣7 𝑣𝑣8 𝑣𝑣9 𝑣𝑣10 𝑣𝑣11 𝑣𝑣12

𝑣𝑣13 𝑣𝑣14 𝑣𝑣15 𝑣𝑣16 𝑣𝑣17 𝑣𝑣18

𝑣𝑣19 𝑣𝑣20 𝑣𝑣21 𝑣𝑣22 𝑣𝑣23 𝑣𝑣24

𝑣𝑣25 𝑣𝑣26 𝑣𝑣27 𝑣𝑣28 𝑣𝑣29 𝑣𝑣30

𝑣𝑣31 𝑣𝑣32 𝑣𝑣33 𝑣𝑣34 𝑣𝑣35 𝑣𝑣36

(b) Standard basis functions (numbered).

enriched by Γ1
enriched by Γ2
enriched by Γ1 and Γ2

basis functions that are
standard basis functions

(c) Enrichment status of basis functions.

Figure 3.5 Setting in Example 3.3 including the numbering and the enrichment status
of the basis functions.

and the index set of basis functions enriched by Γ2 is given by

N2 = {15, 21, 22, 27, 28, 33, 34}, (3.47)

see Figure 3.5(c) for a visualization. Using the representation of (3.39), the values of the

coefficients are

uj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
κ1 for j ∈ {1, . . . , 24}

κ2 for j ∈ {25, . . . , 28, 31, . . . , 34},

κ3 for j ∈ {29, 30, 35, 36},

, (3.48)

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 43

u1,k =

⎧⎪⎪⎨⎪⎪⎩
κ2 − κ1 for k ∈ {13, . . . , 18, 19, . . . , 22}

κ3 − κ1 for k ∈ {23, 24},
, (3.49)

and

u2,k = κ3 − κ2 for k ∈ N2. (3.50)

3.3.2 Imposing interface and boundary conditions using Nitsche’s method

As discussed in Section 2.3.3.3, there are three methods available to impose boundary and

interface conditions when using eXtended discretization methods: the Nitsche method, the use

of Lagrangian multipliers, and the penalty approach. In this thesis, we exclusively use Nitsche’s

method [27], which will be derived following [49, 50, 69] for the hierarchical eXtended finite

element method.

Let Ω ⊂ Rd be a polygonally bounded domain with ∂Ω = ΓD ∪ ΓN, which is separated into

Ndom disjoint subdomains Ωi by Γi ⊆ Γ̃i, which in turn are the zero level sets of hierarchically

ordered level set functions φi, i = 1, . . . , Ndom − 1. We assume that the mesh is fitted to ∂Ω

and choose ∇ · (κ∇u) as a representative term for deriving Nitsche’s method since terms and

conditions related to interfaces and boundaries arise due to integration by parts.

For uh, vh ∈ Vh and κ ∈ Ṽh, with Vh, Ṽh denoting extended approximation spaces which are

based on a hierarchical enrichment of given spaces V FEM, Ṽ FEM ⊂ H1(Ω) that are not neces-

sarily the same, we have, via integration by parts and reordering,

Ndom∑
i=1

Ç
−
∫
Ωi

∇ ·
(
κ|Ωi∇uh|Ωi

)
vh|Ωi dx

å
=

Ndom∑
i=1

∫
Ωi

κ|Ωi∇uh|Ωi · ∇vh|Ωi dx−
Ndom∑
i=1

∫
∂Ωi

κ|Ωi∇uh|Ωi · n⃗ivh|Ωi dx

=
Ndom∑
i=1

∫
Ωi

κ|Ωi∇uh|Ωi · ∇vh|Ωi dx

−
Ndom∑
i=1

∫
∂Ωi∩ΓD

κ|Ωi∇uh|Ωi · n⃗ivh|Ωi dx−
Ndom∑
i=1

∫
∂Ωi∩ΓN

κ|Ωi∇uh|Ωi · n⃗ivh|Ωi dx

−
Ndom−1∑
i=1

Ndom∑
l=i+1

∫
∂Ωi∩∂Ωl

κ|Ωi∇uh|Ωi · n⃗i,lvh|Ωi dx

−
Ndom−1∑
i=1

Ndom∑
l=i+1

∫
∂Ωi∩∂Ωl

κ|Ωl
∇uh|Ωl

· n⃗l,ivh|Ωl
dx.

(3.51)

For the presentation of Nitsche’s method, we focus on interface conditions, which are more

general than boundary conditions, see Remark 3.10. According to Definition 3.1, we have

44 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

Γi,l = interiord−1

Ä
Ω̄i ∩ Ω̄l

ä
= interiord−1 (∂Ωi ∩ ∂Ωl) with n⃗i,l = n⃗i = −n⃗l. Hence, we write

−
Ndom−1∑
i=1

Ndom∑
l=i+1

∫
∂Ωi∩∂Ωl

κ|Ωi∇uh|Ωi · n⃗i,lvh|Ωi dx

−
Ndom−1∑
i=1

Ndom∑
l=i+1

∫
∂Ωi∩∂Ωl

κ|Ωl
∇uh|Ωl

· n⃗l,ivh|Ωl
dx

= −
Ndom−1∑
i=1

Ndom∑
l=i+1

Ç∫
∂Ωi∩∂Ωl

Ä
κ|Ωi∇uh|Ωi · n⃗i,lvh|Ωi + κ|Ωl

∇uh|Ωl
· n⃗l,ivh|Ωl

ä
dx

å
= −

Ndom−1∑
i=1

Ndom∑
l=i+1

Ç∫
∂Ωi∩∂Ωl

Ä
κ|Ωi∇uh|Ωi · n⃗i,lvh|Ωi − κ|Ωl

∇uh|Ωl
· n⃗i,lvh|Ωl

ä
dx

å
= −

Ndom−1∑
i=1

Ndom∑
l=i+1

(∫
Γi,l

(
κ|Ωi∇uh|Ωi · n⃗ivh|Ωi − κ|Ωl

∇uh|Ωl
· n⃗ivh|Ωl

)
dx

)
.

(3.52)

Within the hierarchical level set method used for the decomposition of the domain into subdo-

mains, it is Γi,l ⊂ Γi. Thus, we write Γi,l = Γi,l ∩ Γi so that

−
Ndom−1∑
i=1

Ndom∑
l=i+1

(∫
Γi,l

(
κ|Ωi∇uh|Ωi · n⃗ivh|Ωi − κ|Ωl

∇uh|Ωl
· n⃗ivh|Ωl

)
dx

)

= −
Ndom−1∑
i=1

Ndom∑
l=i+1

(∫
Γi∩Γi,l

(
κ|Ωi∇uh|Ωi · n⃗ivh|Ωi − κ|Ωl

∇uh|Ωl
· n⃗ivh|Ωl

)
dx

) (3.53)

On each interface part Γi ∩ Γi,l ̸= ∅‡, i = 1, . . . , Ndom − 1 and l > i, we can enforce either jump

conditions

Jκ∇uK · n⃗i = gi,l, JuK = qi,l, (3.54)

or Dirichlet conditions

u|Ωi = gi, u|Ωl
= gl, (3.55)

with functions gi,l, qi,l, and gi, gl that are sufficiently smooth.

Remark 3.10 (Imposing boundary conditions with Nitsche’s method). Imposing Dirichlet con-

ditions

u = gD on ΓD (3.56)

at a boundary ΓD instead of an interface is obviously a special case of the conditions (3.55)

since we only have to consider one boundary.

‡Please note that it is by definition Γi =
⋃

l>i Γi,l and,hence, Γi ∩Γi,l = ∅ means that ∂Ωi ∩ ∂Ωl = ∅ so that
the integration domain is empty.

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 45

Jump conditions: For imposing jump conditions on an interface Γi0 ∩ Γi0,l0 , with i0 ∈
{1, . . . , Ndom−1} and l0 ∈ {i0+1, . . . , Ndom}, we firstly summarize the corresponding terms by

−
∫
Γi0

∩Γi0,l0

Ä
κ|Ωi0

∇uh|Ωi0
· n⃗i0vh|Ωi0

− κ|Ωl0
∇uh|Ωl0

· n⃗i0vh|Ωl0

ä
dx

= −
∫
Γi0

∩Γi0,l0

Jκ∇uh · n⃗i0vhKdx
(3.57)

using the jump operator J·K defined in Definition 3.3. Since v ∈ Vh may be discontinuous across

all interfaces, it is JvK ̸= 0 in general. Hence, we cannot extract v from the jump and include

the respective condition but have to use the relation introduced in equation (3.1). Then we

have

−
∫
Γi0

∩Γi0,l0

Jκ∇uh · n⃗i0vhKdx = −
∫
Γi0

∩Γi0,l0

JvhK{κ∇uh · n⃗i0} dx

−
∫
Γi0

∩Γi0,l0

⟨vh⟩Jκ∇uh · n⃗i0Kdx
(3.58)

and the flux condition (3.54) (left) can now be considered by

−
∫
Γi0

∩Γi0,l0

⟨vh⟩Jκ∇uh · n⃗i0Kdx = −
∫
Γi0

∩Γi0,l0

⟨vh⟩gi0,l0 dx. (3.59)

In order to control the jump JuhK across Γi0 , see (3.54) (right), we add the terms in form of an

equation ∫
Γi0

∩Γi0,l0

λi0,l0
h

JuhKJvhKdx−
∫
Γi0

∩Γi0,l0

λi0,l0
h

qi0,l0JvhKdx = 0, (3.60)

which stabilize the bilinear form and establish coercivity, where h denotes the mesh size and

λi0,l0 ∈ R the so-called stabilization parameter. In total, we then have

−
∫
Γi0

∩Γi0,l0

Jκ∇uh · n⃗i0vhKdx =−
∫
Γi0

∩Γi0,l0

JvhK{κ∇uh · n⃗i0} dx+

∫
Γi0

∩Γi0,l0

λi0,l0
h

JuhKJvhKdx

−
∫
Γi0

∩Γi0,l0

⟨vh⟩gi0,l0 dx−
∫
Γi0

∩Γi0,l0

λi0,l0
h

qi0,l0JvhKdx,
(3.61)

where the last two terms are shifted to the right-hand-side.

The definition of the operators {·} and ⟨·⟩ depends on weights wi0 an wl0 with wi0 + wl0 = 1,

cf. Definition 3.3. Inspired by [49], we set them as

wi0 =
|S ∩ Ωi0 |

|S ∩ (Ωi0 ∪ Ωl0)|
respectively wl0 =

|S ∩ Ωl0 |
|S ∩ (Ωi0 ∪ Ωl0)|

(3.62)

so that for an element S ∈ Sh intersected by Γi0,l0 , they correspond to the relative subvolume

parts of S lying in the respective subdomain. By considering the intersecting volume |S∩(Ωi0 ∪
Ωl0)| we take into account that an element can be intersected multiple times and, hence, may

contain a multiple junction.

46 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

Dirichlet conditions: When imposing Dirichlet conditions, the respective interface conditions

on each domain are considered separately. Hence, no equivalent relation to equation (3.1) is

necessary. Instead, in order to control the boundary values, we only add the terms in form of

equations

∫
Γi0

∩Γi0,l0

λi0,l0
h

uh|Ωi0
vh|Ωi0

dx−
∫
Γi0

∩Γi0,l0

λi0,l0
h

gi0vh|Ωi0
dx = 0, and∫

Γi0
∩Γi0,l0

λi0,l0
h

uh|Ωl0
vh|Ωl0

dx−
∫
Γi0

∩Γi0,l0

λi0,l0
h

gl0vh|Ωl0
dx = 0

(3.63)

to

−
∫
Γi0

∩Γi0,l0

Ä
κ|Ωi0

∇uh|Ωi0
· n⃗i0vh|Ωi0

− κ|Ωl0
∇uh|Ωl0

· n⃗i0vh|Ωl0

ä
dx. (3.64)

Again linear terms in equation (3.63) that contain the boundary values gi0 and gl0 are shifted

to the right-hand-side.

Symmetric vs. non-symmetric Nitsche method

Regardless of the type of interface conditions, the resulting system is, in contrast to the original

continuous formulation, obviously not symmetric, even if we shift the linear terms containing

the imposed conditions to the right-hand-side of a problem. Since symmetry is advantageous

from a numerical point of view, we introduce additional terms to make the problem symmetric

again.

For all interfaces Γi ∩ Γi,l on which jump conditions are enforced, we add the auxiliary zero

terms

−
∫
Γi∩Γi,l

JuhK{κ∇vh · n⃗i} dx+

∫
Γi∩Γi,l

qi,l{κ∇vh · n⃗i} dx = 0 (3.65)

so that we end up with

−
∫
Γi∩Γi,l

Jκ∇uh · n⃗ivhKdx =

−
∫
Γi∩Γi,l

JvhK{κ∇uh · n⃗i}dx−
∫
Γi∩Γi,l

JuhK{κ∇vh · n⃗i} dx+

∫
Γi∩Γi,l

λi,l
h

JuhKJvhKdx

−
∫
Γi∩Γi,l

⟨vh⟩gi,l dx+

∫
Γi∩Γi,l

qi,l{κ∇vh · n⃗i} dx−
∫
Γi∩Γi,l

λi,l
h

qi,lJvhKdx,

(3.66)

and, if Dirichlet conditions have to be imposed, we add

−
∫
Γi∩Γi,l

κ|Ωi∇vh|Ωi · n⃗iuh|Ωi dx+

∫
Γi∩Γi,l

κ|Ωi∇vh|Ωi · n⃗igi dx = 0,

+

∫
Γi∩Γi,l

κ|Ωl
∇vh|Ωl

· n⃗iuh|Ωl
dx−

∫
Γi∩Γi,l

κ|Ωl
∇vh|Ωl

· n⃗igl dx = 0
(3.67)

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 47

providing us with

−
∫
Γi∩Γi,l

(
κ|Ωi∇uh|Ωi · n⃗ivh|Ωi − κ|Ωl

∇uh|Ωl
· n⃗ivh|Ωl

)
dx

=−
∫
Γi∩Γi,l

κ|Ωi∇uh|Ωi · n⃗ivh|Ωi dx−
∫
Γi∩Γi,l

κ|Ωi∇vh|Ωi · n⃗iuh|Ωi dx+

∫
Γi∩Γi,l

λi,l
h
uh|Ωivh|Ωi dx

+

∫
Γi∩Γi,l

κ|Ωl
∇uh|Ωl

· n⃗ivh|Ωl
dx+

∫
Γi∩Γi,l

κ|Ωl
∇vh|Ωl

· n⃗iuh|Ωl
dx+

∫
Γi∩Γi,l

λi,l
h
uh|Ωl

vh|Ωl
dx

+

∫
Γi∩Γi,l

κ|Ωi∇vh|Ωi · n⃗igi dx−
∫
Γi∩Γi,l

κ|Ωl
∇vh|Ωl

· n⃗igl dx

−
∫
Γi∩Γi,l

λi,l
h
givh|Ωi dx−

∫
Γi∩Γi,l

λi,l
h
glvh|Ωl

dx.

(3.68)

In both situations, the linear terms, which are the last three terms in equation (3.66) and the

last four terms in equation (3.68), have been shifted to the right-hand-side.

Unfortunately, the stabilization parameters λi,l have to be chosen large enough as mentioned in

various articles, see e.g. [24, 49, 50, 69]. In fact, the magnitude of λ depends on the polynomial

degree of the approximation space and the shape regularity both of which impacts the so-called

inverse trace inequality used in the analysis of problems formulated using this method. In

contrast to this, we can choose λi,l = 1 when using the non-symmetric Nitsche variant or even

drop the penalty term completely by choosing λi,l = 0, see [70]. The resulting bilinear and

linear form are denoted by ah and Lh.

Remark 3.11 (Analysis of Nitsche’s method and stabilization techniques). By decoupling com-

putational mesh and physical domain boundaries and thereby, shifting the approximation issue

from the mesh to the discrete function space, the challenge for guaranteeing inf-sup stability

of the discrete problem arises, cf. Section 2.3.3.4. While this issue has to be addressed for

each problem individually, we will briefly point out the main aspects that have to be addressed.

Extensive presentations of these aspects are presented for specific problems in [24, 49, 50]. A

method which overcomes not only the challenges arising due to the imposition of boundary con-

ditions with Nitsche’s method but also several numerical issues such as the ill-conditioning of

discrete systems is the ghost penalty stabilization [60, 70, 71]. The fundamental idea of the ghost

penalty approach is to introduce an additional stabilization term to the problem and, thereby,

allowing for the controlling of the normal derivative on the interface by the H1−semi-norm

instead of an energy norm. Moreover, the stabilization term is independent of the intersection

of interface and element.

To illustrate the derivation of the terms arising due to Nitsche’s method more clearly, we

consider the following example:

Example 3.4 (Symmetric variant of Nitsche’s method applied to Example 3.1). Consider the

example that is extensively discussed in Section 3.1: Assuming that the mesh is fitted to ∂Ω, we

introduce two hierarchically ordered, sufficiently smooth level set functions φ1, φ2 : Ω → R with

48 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

zero level sets Γ1 = Γ1,2 ∪ Γ1,3 and Γ2 = Γ2,3 so that the problem in new notation reads: On

Rd ⊃ Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Γ1 ∪ Γ2 with ∂Ω = ΓD ∪ ΓN solve

ξu−∇ · (κ∇u) = f in Ω1 ∪ Ω2 ∪ Ω3,

u = gD on ΓD,

−κ∇u · n⃗ = gN on ΓN,

Jκ∇uK · n⃗1 = g1 on Γ1,

JuK = q1 on Γ1,

u|Ω2 = g2 on Γ2,

u|Ω3 = g3 on Γ2

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

with

g1 =

⎧⎨⎩g1,2 on Γ1,2

g1,3 on Γ1,3

, and q1 =

⎧⎨⎩q1,2 on Γ1,2

q1,3 on Γ1,3

. (3.76)

Let Vh be an extended approximation space on a triangulation Sh. Using the symmetric variant

of Nitsche’s method to include the boundary conditions at ΓD and interface conditions for Γ1

and Γ2, defined by equations (3.70) and (3.72) to (3.75), the discrete variational formulation

of the problem reads: For vh ∈ Vh find uh ∈ Vh such that it is

a(uh, vh) +
4∑
l=0

al(uh, vh)
=: ah(uh,vh)

= L(vh) +
4∑
l=0

Ll(vh)
=:Lh(vh)

, (3.77)

where the bilinear forms are defined via

a(uh, vh) =

∫
Ω1∪Ω2∪Ω3

ξuhvh dx+

∫
Ω1∪Ω2∪Ω3

κ∇uh∇vh dx (3.78)

a0(uh, vh) =
3∑
i=1

Ç
−
∫
∂Ωi∩ΓD

κ|Ωi∇uh|Ωi · n⃗ivh|Ωi dx

−
∫
∂Ωi∩ΓD

κ|Ωi∇vh|Ωi · n⃗iuh|Ωi dx+

∫
∂Ωi∩ΓD

λ0
h
uh|Ωivh|Ωi dx

å
,

(3.79)

a1(uh, vh) =−
∫
Γ1∩Γ1,2

{κ∇uh · n⃗1}JvhKdx−
∫
Γ1∩Γ1,2

{κ∇vh · n⃗1}JuhKdx

+

∫
Γ1∩Γ1,2

λ1
h

JuhKJvhKdx,
(3.80)

a2(uh, vh) =−
∫
Γ1∩Γ1,3

{κ∇uh · n⃗1}JvhKdx−
∫
Γ1∩Γ1,3

{κ∇vh · n⃗1}JuhKdx

+

∫
Γ1∩Γ1,3

λ2
h

JuhKJvhKdx,
(3.81)

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 49

a3(uh, vh) =−
∫
Γ2∩Γ2,3

κ|Ω2∇uh|Ω2 · n⃗2vh|Ω2 dx−
∫
Γ2∩Γ2,3

κ|Ω2∇vh|Ω2 · n⃗2uh|Ω2 dx

+

∫
Γ2∩Γ2,3

λ4
h
uhvh dx,

(3.82)

a4(uh, vh) =

∫
Γ2∩Γ2,3

κ|Ω3∇uh|Ω3 · n⃗2vh|Ω3 dx+

∫
Γ2∩Γ2,3

κ|Ω3∇vh|Ω3 · n⃗2uh|Ω3 dx

+

∫
Γ2∩Γ2,3

λ4
h
uhvh dx,

(3.83)

and the linear forms are given by

L(vh) =

∫
Ω1∪Ω2∪Ω3

fvh dx−
∫
ΓN,h

gNvh dx, (3.84)

L0(uh, vh) =
3∑
i=1

Ç∫
∂Ωi∩ΓD

κ|Ωi∇vh|Ωi · n⃗igD|Ωi dx+

∫
∂Ωi∩ΓD

λ0
h
gD|Ωivh|Ωi dx

å
, (3.85)

L1(uh, vh) = −
∫
Γ1∩Γ1,2

{κ∇vh · n⃗1}q1,2 dx+

∫
Γ1∩Γ1,2

⟨v⟩g1,2 +
∫
Γ1∩Γ1,2

λ1
h
q1,2JvhKdx, (3.86)

L2(uh, vh) = −
∫
Γ1∩Γ1,3

{κ∇vh · n⃗1}q1,3 dx+

∫
Γ1∩Γ1,3

⟨v⟩g1,3 +
∫
Γ1∩Γ1,3

λ2
h
q1,3JvhKdx, (3.87)

L3(uh, vh) = −
∫
Γ2∩Γ2,3

κ|Ω2∇vh|Ω2 · n⃗2g2 dx+

∫
Γ2∩Γ2,3

λ3
h
g2vh dx, (3.88)

L4(uh, vh) =

∫
Γ2∩Γ2,3

κ|Ω3∇vh|Ω3 · n⃗2g3 dx+

∫
Γ2∩Γ2,3

λ4
h
g3vh dx, (3.89)

with λi ∈ R as stabilization parameters. Therein, a0 and L0 include condition (3.70), a1, a2

and L1, L2 include the conditions (3.72) and (3.73), a3 and L3 include (3.74), and a4 and L4

include (3.75). Please note that the sign difference in the forms a4(·, ·) and L4(·) results from

the normal n⃗2.

3.3.3 Time-dependent problems with moving interfaces

After considering situations with steady-state domains, and hence stationary discontinuities,

in the previous sections, we now comment on how to solve problems with moving or evolving

geometries. We suppose that for t ∈ [t0, tf], we have a hold-all domain Ω ⊂ Rd and hierarchically

ordered level set functions φi(t), i = 1, . . . , Ndom−1, with zero level sets Γ̃i(t) that are explicitly

given, cf. Remark 2.3. The interfaces separating a hold-all domain Ω into Ndom disjoint

subdomains Ωl(t) are given by Γi(t) ⊆ Γ̃i(t), where each Γi(t) is characterized by equation (3.33).

As already mentioned, the introduction of space-time eXtended finite elements [50, 62] can be

seen as the natural approach to discretize problems involving moving or evolving discontinu-

ities, cf. also [29, Chap. 10 and Chap. 11]. By considering the time as an additional spatial

50 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

dimension, the idea of the space-time method is to transform the problem into a d+ 1 dimen-

sional stationary problem. For the numerical solution, the space-time domain Ω× [t0, tf] is then

separated into time slabs Qn = Ω× (tn−1, tn], which are prisms resulting from considering the

domain over the time interval (tn−1, tn], and the problem is defined in a variational formulation

for these time slabs that are usually decoupled by applying a discontinuous Galerkin method.

While the numerical costs are more or less comparable to time stepping methods, the implemen-

tation, especially in regards to the subdivision of elements, is rather complex and challenging.

Moreover, concepts such as the Nitsche method need to adapted. An extensive introduction

and description of space-time methods for the eXtended finite element method is given in [50]

which addresses two-phase mass transport problems. However, due to the complexity of space

time eXtended finite element method in regards to both analysis and implementation, we use a

more classical approach and discretize problems involving time dependent discontinuities using

Rothe’s method.

Remark 3.12 (Maintaining of the level set function φi(t)). In practice, the level set functions

φi are usually only given for the initial state φi(t0) while their evolution in time is part of the

solution. This introduces additional challenges since, firstly, the advantageous signed distance

property is lost over time and, secondly and more bothersome, the level set method is not volume

and mass conserving. As a consequence, some maintaining methods such as a reinitialization

techniques and volume correction approaches are necessary [29, Chap. 7]. In addition to this,

it is known that solving the hyperbolic level set problem using finite elements may require a

stabilization technique such as the Streamline-Upwind-Petrov-Galerkin (SUPG) method [72].

All these issues are addressed in Section 4.4.1, however, at this point we neglect them by

assuming that all functions are explicitly given for all t ∈ [t0, tf] and focus on the presentation

of the hierarchical eXtended finite element approach instead.

Rothe’s method

In contrast to the space-time XFEM, we need that the quantity subject to the time derivative is

defined on all domains and, moreover, sufficiently smooth, so that we can approximate the time

derivate by a finite element approximation. While this might seem to be a significant restriction,

most problems can be scaled so that the effected function is continuous. For example, the heat

equation, where we usually have the term ρc∂tu, with ρ denoting the density, c the specific heat

capacity, and u the temperature, can be reformulated by introducing the thermal diffusivity

coefficient κ = λ
ρc , where λ is the thermal conductivity. However, it has to be noted that for such

scenarios no higher order can be achieved in time as we can only discretize the time derivate

by an explicit or implicit Euler scheme. To illustrate the scheme when using Rothe’s method,

we consider the a diffusion equation, where the interface evolution is prescribed and therefore

not part of the problem.

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 51

Example 3.5 (Diffusion equation with prescribed interface evolution). For Ndom = 3, let

Ω ⊂ Rd be a fixed domain that is polygonally bounded with ∂Ω = ΓD ∪ ΓN and consists for

t ∈ [t0, tf] of the disjoint subdomains Ω1(t), Ω2(t), and Ω3(t) separated by sharp and sufficiently

smooth interfaces Γ1,2(t), Γ1,3(t), and Γ2,3(t) with outward-pointing unit normal vectors n⃗1,2(t),

n⃗1,3(t), and n⃗2,3(t). For given data which is sufficiently smooth§, find u(·, t), t ∈ [t0, tf], s.t. it

solves the problem

∂tu−∇ · (κ∇u) = f in Ω1(t) ∪ Ω2(t) ∪ Ω3(t),

u = gD on ΓD(t),

−κ∇u · n⃗ = gN on ΓN(t),

Jκ∇uK · n⃗1,2 = g1,2 on Γ1,2(t),

JuK = 0 on Γ1,2(t),

Jκ∇uK · n⃗1,3 = g1,3 on Γ1,3(t),

JuK = 0 on Γ1,3(t),

u|Ω2 = g2 on Γ2,3(t),

u|Ω3 = g2 on Γ2,3(t),

u(·, t0) = u0 in Ω1(t0) ∪ Ω2(t0) ∪ Ω3(t0),

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

where the situation at t = t0 is similar to the setting depicted in Figure 3.2.

Time discretization: Discretizing the time interval [t0, tf] by Nt + 1 time steps into tn =

t0 + n∆t, n = 0, . . . , Nt, where ∆t denotes the time step size, we apply the implicit Euler

time discretization to the diffusion problem which then reads: For n = 0, . . . , Nt − 1, find

un+1 ≈ u(·, tn+1) such that

un+1

∆t
−∇ ·

Ä
κn+1∇un+1

ä
= fn+1 +

un

∆t
, in Ω1(tn+1) ∪ Ω2(tn+1) ∪ Ω3(tn+1)

un+1 = gn+1
D on ΓD(tn+1),

−κn+1∇un+1 · n⃗n+1 = gn+1
N on ΓN(tn+1),

Jκn+1∇un+1K · n⃗n+1
1,2 = gn+1

1,2 on Γ1,2(tn+1),

Jun+1K = 0 on Γ1,2(tn+1),

Jκn+1∇un+1K · n⃗n+1
1,3 = gn+1

1,3 on Γ1,3(tn+1),

Jun+1K = 0 on Γ1,3(tn+1),

u|n+1
Ω2

= gn+1
2 on Γ2,3(tn+1),

u|n+1
Ω3

= gn+1
2 on Γ2,3(tn+1).

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

For a fixed n ∈ {0, . . . , Nt−1}, we use the notation ξ = 1
∆t and define Ωi := Ωi(tn+1), i = 1, 2, 3,

u := un+1, et cetera. After summarizing the right-hand-side in (3.100) by f̃ := f + ξun, we end

§Notably, it is JuK = 0 at all Γi,l as we require continuity of u across all interfaced.

52 Chapter 3: A hierarchical eXtended finite element method for multiphysics problems

up with the (quasi-)stationary problem: Find u so that it solves the problem given by

ξu−∇ · (κ∇u) = f̃ in Ω1 ∪ Ω2 ∪ Ω3,

u = gD on ΓD

−κ∇u · n⃗ = gN on ΓN,

Jκ∇uK · n⃗1,2 = g1,2 on Γ1,2,

JuK = 0 on Γ1,2,

Jκ∇uK · n⃗1,3 = g1,3 on Γ1,3,

JuK = 0 on Γ1,3,

u|Ω2 = g2 on Γ2,3,

u|Ω3 = g2 on Γ2,3

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

for each time step. Obviously, the derived problem corresponds to the already presented sta-

tionary Example 3.1.

Spatial discretization: Obviously, the derived sequence of steady-state problems resembles

the already presented stationary situation, in particular Example 3.1. Consequently, it can be

directly discretized using the hierarchical finite element method where interface (and optionally

also the Dirichlet boundary) conditions are imposed using Nitsche’s method. Hence, the full

discretized problem is given by:

Let Vh be an extended approximation space on a triangulation Sh. Using the symmetric variant

of Nitsche’s method to include the boundary conditions at ΓD and interface conditions for Γ1

and Γ2, defined by equations (3.70) and (3.72) to (3.75), the discrete variational formulation of

the problem reads: For vh ∈ Vh find uh ∈ Vh such that

a(uh, vh) +
4∑
l=0

al(uh, vh)
=: ah(uh,vh)

= L(vh) +
4∑
l=0

Ll(vh)
=:Lh(vh)

, (3.118)

where the bilinear forms are defined as

a(uh, vh) =

∫
Ω1∪Ω2∪Ω3

ξuhvh dx+

∫
Ω1∪Ω2∪Ω3

κ∇uh∇vh dx, (3.119)

a0(uh, vh) =
3∑
i=1

Ç
−
∫
∂Ωi∩ΓD

κ|Ωi∇uh|Ωi · n⃗ivh|Ωi dx

−
∫
∂Ωi∩ΓD

κ|Ωi∇vh|Ωi · n⃗iuh|Ωi dx+

∫
∂Ωi∩ΓD

λ0
h
uh|Ωivh|Ωi dx

å
,

(3.120)

Chapter 3: A hierarchical eXtended finite element method for multiphysics problems 53

a1(uh, vh) =−
∫
Γ1∩Γ1,2

{κ∇uh · n⃗1}JvhK dx−
∫
Γ1∩Γ1,2

{κ∇vh · n⃗1}JuhK dx

+

∫
Γ1∩Γ1,2

λ1
h

JuhKJvhKdx,
(3.121)

a2(uh, vh) =−
∫
Γ1∩Γ1,3

{κ∇uh · n⃗1}JvhK dx−
∫
Γ1∩Γ1,3

{κ∇vh · n⃗1}JuhK dx

+

∫
Γ1∩Γ1,3

λ2
h

JuhKJvhKdx,
(3.122)

a3(uh, vh) =−
∫
Γ2∩Γ2,3

κ|Ω2∇uh|Ω2 · n⃗2vh|Ω2 dx−
∫
Γ2∩Γ2,3

κ|Ω2∇vh|Ω2 · n⃗2uh|Ω2 dx

+

∫
Γ2∩Γ2,3

λ3
h
uhvh dx,

(3.123)

a4(uh, vh) =

∫
Γ2∩Γ2,3

κ|Ω3∇uh|Ω3 · n⃗2vh|Ω3 dx+

∫
Γ2∩Γ2,3

κ|Ω3∇vh|Ω3 · n⃗2uh|Ω3 dx

+

∫
Γ2∩Γ2,3

λ3
h
uhvh dx,

(3.124)

and the linear forms are given by

L(vh) =

∫
Ω1∪Ω2∪Ω3

f̃vh dx−
∫
ΓN,h

gNvh dx, (3.125)

L0(uh, vh) =
3∑
i=1

Ç∫
∂Ωi∩ΓD

κ|Ωi∇vh|Ωi · n⃗igD|Ωi dx+

∫
∂Ωi∩ΓD

λ0
h
gD|Ωivh|Ωi dx

å
, (3.126)

L1(uh, vh) =

∫
Γ1∩Γ1,2

⟨v⟩g1,2 dx, (3.127)

L2(uh, vh) =

∫
Γ1∩Γ1,3

⟨v⟩g1,3 dx, (3.128)

L3(uh, vh) = −
∫
Γ2∩Γ2,3

κ|Ω2∇vh|Ω2 · n⃗2g2 dx+

∫
Γ2∩Γ2,3

λ3
h
g2vh dx, (3.129)

L4(uh, vh) =

∫
Γ2∩Γ2,3

κ|Ω3∇vh|Ω3 · n⃗2g2 dx+

∫
Γ2∩Γ2,3

λ3
h
g2vh dx, (3.130)

with λi ∈ R as stabilization parameters. However, the right-hand-side term f̃ in equation (3.125)

demands particular attention in regards to the numerics as it contains a term of type

∫
Ω1(tn+1)∪Ω2(tn+1)∪Ω3(tn+1)

ξuh(tn)vh(tn+1) dx, (3.131)

which involves functions that are enriched by (potentially) different locations of the disconti-

nuities Γi,l(tn) and Γi,l(tn+1), 1 ≤ i < l ≤ 3. We will point this out in more detail and address

the implementation aspects in Section 4.3.

Chapter 4

Automated solution of multiphysics

problems involving discontinuities

The numerical solution of multiphysics problems involving discontinuities is very challenging,

not only with respect to the mathematical theory, but especially in regards to the implementa-

tion. While conventional finite element methods can be used for solving a wide range of physical

and engineering problems, eXtended discretization methods such as the method presented in

Chapter 3 are much better suited for this kind of problems, see Section 2.3.

Unfortunately, the implementation of conventional finite element methods into a more general

framework is already difficult and error-prone and, thus, takes a long time. Moreover, small

changes within the problem formulation or the discretization often result in a lot of code changes

and, hence, require intensive testing. This makes the solution of fundamentally different PDE

problems using one framework even more time consuming. All these aspects are especially true

in regards to the implementation of an eXtended finite element method which, among others,

needs concepts to

(XFEM 1) represent and track interfaces and unfitted boundaries,

(XFEM 2) enrich function spaces with respect to the positions of interfaces and domain bound-

aries,

(XFEM 3) perform quadrature on (possibly multiple-)intersected elements, and

(XFEM 4) impose conditions on the discontinuities.

A very interesting approach to overcome the implementation drawbacks of the (eXtended) finite

element method is automated code generation which is also known as automated programming

or meta-programming. The basic idea of automated code generation is to write meta-programs

that can interpret code written using a higher level of abstraction and generate corresponding

55

56 Chapter 4: Automated solution of multiphysics problems involving discontinuities

lower level code which the users would otherwise have to write themselves. While the imple-

mentation of a library taking advantage of automated code generation is very complex and

sophisticated, using this approach for the development of a full-featured framework has sev-

eral advantages. The most important benefits are that it allows for so-called abstract coding

meaning that the user can write high-level code which is translated to low-level code and, there-

fore, for rapid prototyping. Moreover, the generated code is consistent and the maintaining is

reduced to a minimum.

The idea of automated code generation for solving PDE problems with finite elements is, at least

in part, used in many frameworks such as FreeFEM++ [73], COMSOL [74], and the FEniCS project

[1]. Such frameworks are usually based on the idea of separating a problem’s discretization

from the implementation of methods used for computing the numerical solution. Then, the

discretization of problems can be considered with approaches based on automated code gener-

ation. As a result, the implementation and solution of different PDE problems from various

areas becomes rather simple in such frameworks. Unfortunately, all mentioned libraries only

feature the use of conventional finite element methods but do not provide eXtended discretiza-

tion methods. This is due to the fact that, in addition to fundamental aspects that need to

be addressed by any implementation supporting eXtended discretization methods, automating

the generation of code for such methods is especially complex. In contrast to the conventional

finite element method, a lot of numerical methods required by eXtended discretization methods

depend on information that are only known at run-time. In particular this concerns methods

that depend on the actual characteristic of the discontinuity defining the enrichment such as

quadrature routines for intersected elements. Consequently, it is not obvious how the discretiza-

tion of a problem can be separated from the implementation of methods used for computing

the numerical solution.

While this issue has to be resolved on a technical level, it is obvious that the hierarchical

eXtended finite element method is, by design, very suited to be implemented into a framework

that makes use of automated code generation. Especially since the hierarchical order defines

some kind of tree structure of how and where the required enrichments have to be added and,

moreover, introduces a natural oder of basis functions and corresponding coefficients. Since

from our point of view, the FEniCS framework is not only an open source project but also offers

the most convenient framework to solve PDE-based problems and takes the automated code

generation approach to the next level, we choose to implement the hierarchical eXtended finite

element method as a FEniCS toolbox called miXFEM.

4.1 The FEniCS project

FEniCS is a collaborative project of researchers who develop tools for automated scientific

computing, especially in the field of finite element methods for the solution of partial differential

Chapter 4: Automated solution of multiphysics problems involving discontinuities 57

equations [1]. It was initially created in 2003 and has since then been extended and updated

regularly. FEniCS offers a python and a C++ interface and consists of a collection of core

components such as

• the Unified Form Language UFL [75, 76], which is an implementation of an abstract

domain-specific language used to define the finite element discretizations of differential

equations in a coded notation that resembles very closely the standard mathematical

notation used in variational formulations,

• the FEniCS Form Compiler (FFC) [77–79], which analyzes given UFL code and, in com-

bination with the library FIAT [80, 81], generates low-level C++ code, corresponding to

the discretized variational forms specified in the UFL file, that is compatible with the UFC

[82, 83] interface for arbitrary finite elements on simplices,

• DOLFIN [84, 85], the main problem solving environment and user interface whose function-

ality integrates the other FEniCS components. Additionally, it handles communication

with external libraries or toolboxes such as miXFEM.

An overview of the relationships between the components of FEniCS and external software is

given in Figure 4.1 [85]. Depending on the FEniCS version, there are some other core components

that are not listed here.

Recall that the process of solving a PDE-based problem consists, in principle, of discretizing

the domain, introducing a (discrete) variational formulation that includes the definition of

the approximation spaces, and solving the resulting system of equations. The idea of the

FEniCS framework is to separate a problems’s discretization from the implementation of methods

used for computing the numerical solution. Therefore, solving a problem with FEniCS consists

of the following steps:

(1) Define the discrete variational formulation of a PDE-based problem using the high ab-

straction level of the UFL language, then

(2) use the FFC to automatically generate low-level C++ code corresponding to the discretiza-

tion of the variational problem specified in the *.ufl file, and finally,

(3) implement the actual problem, including the computational mesh, function definitions,

et cetera in DOLFIN, therefore making use of the automatically generated code and the

provided interfaces to third-party libraries,

see Figure 4.2. In the following paragraphs, we present a more detailed overview of the men-

tioned core components as we will have to enhance them to implement the hierarchical eXtended

finite element method as toolbox for the FEniCS framework, thereby, allowing for the automated

solution of problems involving discontinuities. For a better understanding, we demonstrate the

58 Chapter 4: Automated solution of multiphysics problems involving discontinuities

DOLFIN

FIAT FErariInstant

FEniCS Apps

UFC

ViperSyFi

PETSc uBLAS UMFPACK SCOTCHNumPy VTK

UFL

Application

Applications

Interfaces

Core components

External libraries

Trilinos GMP ParMETIS CGAL MPI SLEPc

FFC

Figure 4.1 Overview of FEniCS: DOLFIN functions as the main user interface and han-
dles the communication between all other FEniCS components and external libraries.

The solid lines indicate dependencies and dashed lines indicate data flow [85].

Figure 4.2 Overview of the FEniCS’ approach to solve PDE-based problems: Formu-
late the discrete variational problem in UFL, use the FFC to generate the corresponding

code, and solve the problem with DOLFIN.

workflow of solving a PDE problem with FEniCS by again considering Example 2.2 from Sec-

tion 2.2.

4.1.1 The Unified Form Language (UFL)

The domain specific language Unified Form Language (UFL) [75, 76] can be used to define

finite element discretizations of variational formulations, which resemble the mathematical no-

tations of function spaces and variational formulations. It provides a syntax for finite element

spaces declarations of a range of predefined basic element families, for example, Lagrange

and Discontinuous Lagrange, representing scalar continuous or discontinuous Lagrange finite

elements, respectively. All these basic scalar elements can be combined to construct vector

elements, tensor elements or arbitrary mixed elements.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 59

Recall that the discrete variational formulation of the steady-state diffusion problem Exam-

ple 2.2 reads: Find uh ∈ V 1
cg,h s.t. for all vh ∈ V 1

cg,h, uh = gD,h on ΓD and

∫
Ω
κ∇uh · ∇vh dx︸ ︷︷ ︸

a(uh,vh)

=

∫
Ω
fhvh dx−

∫
ΓN

gN,hvh dx+

∫
Γ1,2

g1,2,hvh dx︸ ︷︷ ︸
L(vh)

(4.1)

holds. The discrete function space V 1
cg,h can be defined in UFL by

1 CG1 = FiniteElement("Lagrange", triangle , 1)

where the keyword ”triangle” states the dimension and shape of the element and the value ”1”

defines the polynomial degree of the basis functions.

The most basic expressions in UFL are form arguments, which do not depend on any other

expression. Form arguments include basis test and trial functions and coefficient functions

which are represented by TestFunction, TrialFunction, and Coefficient classes. More

sophisticated expressions can then be constructed using the form arguments in combination

with so-called operators (which are also expressions).

For the given example, we define

1 u = TrialFunction(CG1)

2 v = TestFunction(CG1)

3 k = Coefficient(DG0)

4 f = Coefficient(CG1)

5 gN = Coefficient(CG1)

6 gI = Coefficient(CG1)

and specify the forms

1 a = k * inner(grad(u),grad(v)) * dx(0) + k * inner(grad(u),grad(v)) * dx(1)

2 L = f * v * dx - gN * v * ds(0) + gI * v * dS(0)

where dx denotes a volume measure or cell integral and ds is a boundary measure on boundary

facets called exterior facet integral. In total, UFL supports the measures

•
∫
Ωi
(·)dx ↔ (·) *dx(i) (cell integral),

•
∫
∂Ωi

(·)ds ↔ (·)*ds(i) (exterior facet integral),

•
∫
Fi
(·)dS ↔ (·)*dS(i) (interior facet integral),

on a domain Ω with external boundary ∂Ω and interior triangulation facets F , where the index i,

denoting a subdomain, can be dropped if no subdomain is present or if the function is piecewise

defined on the subdomains.

60 Chapter 4: Automated solution of multiphysics problems involving discontinuities

4.1.2 FEniCS Form Compiler (FFC)

Arguably the most essential component of the automated code generation approach of FEniCS is

the FEniCS Form Compiler (FFC) [78, 79]. The FFC receives UFL files containing variational

forms as input and produces the corresponding low-level C++ code for the evaluation of element

tensors, finite element basis functions and their derivatives. Thereby, the FFC relies on the

FInite element Automatic Tabulator (FIAT) [81] which implements a mathematical frame-

work for the definition and evaluation of various finite element basis functions on simplices and

can tabulate quadrature points and quadrature weights required for the numerical integration.

The code generated by FFC is compatible with the Unified Form-assembly Code (UFC) in-

terface [83] which is a framework for finite element assembly and works as an interface layer

between problem-specific and general-purpose components of finite element programs. UFC con-

sists of a single header file ufc.h specifying a C++ interface by very few base classes with virtual

functions which must be implemented by a library or code that complies with the UFC specifi-

cation. Thereby, UFC is independent of any other FEniCS component and can be used in a wide

range of finite element solvers.

Generating low level code, that corresponds to a provided UFL file containing a discrete varia-

tional problem, with the FFC is very simple and can be done by the (bash) command

1 ffc -l dolfin <example >.ufl

Then, the work flow of the FFC consists of the following steps [79]:

(FFC 1) Language parsing: The user-specified form is interpreted and stored as a UFL ab-

stract syntax tree (AST)

(FFC 2) Code analysis: The UFL form is preprocessed and form metadata (FormData) ex-

tracted, such as which elements were used to define the form, the number of coefficients

and the cell type (intervals, triangles or tetrahedra).

(FFC 3) Code representation: The preprocessed form is examined and all data needed for

the code generation is created. This includes the generation of finite element basis

functions, extraction of data for mapping of degrees of freedom, and possible pre-

computation of integrals. The generated data is called intermediate representation.

This step is the most complex task during the compiling process.

(FFC 4) Optimization: The intermediate representation is analyzed and parts are optimized.

(FFC 5) Code generation: Based on the (optimized) intermediate representation data, the

actual C++ code for the body of each UFC function is generated. The code is stored as

a dictionary which maps names of UFC functions to strings containing the C++ code.

(FFC 6) Code formatting: The generated code is formatted according and conforming to

the UFC standard.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 61

Figure 4.3 Schematic overview of some core components of DOLFIN. The arrows
indicate dependencies of the modules [1, Chap. 10].

In regards to the steady-state diffusion equation, the automatically generated header file con-

tains about 2900 lines of code.

4.1.3 DOLFIN library

DOLFIN [84, 85] is a C++/python solver library that functions as the main user interface of the

FEniCS project. DOLFIN not only implements some core functionalities of FEniCS, including

algorithms for manipulating meshes and finite element assembly, but also wraps the function-

ality of other FEniCS components as well as external software, and handles the communication

between these components. Thereby, it provides a problem solving environment for PDE-based

finite element models that relies on third-party libraries like PETSc [86] which can be used as

linear algebra framework or VTK [87] for visualization purposes.

DOLFIN is organized in modules that each covers a certain area of functionality such as meshes,

function spaces and functions, methods directly related to finite elements, linear algebra, and

file input/output and visualization. A schematic overview of some core components including

dependencies is illustrated in Figure 4.3 [1, Chap. 10].

The implementation structure of Example 2.2 using the automatically generated header file

SteadyStateDiff.h in DOLFINs C++ interface is given in Figure 4.4. To point out the relation

between DOLFIN and the automatically generated code, we exemplary highlight the finite element

assembly work flow. Given the variational forms, the assembly works as follows [1, Chap. 6]:

For each cell, DOLFIN maps the local indicies of the given cell’s degrees of freedom to the global

ones and calls code that is generated by the FFC to tabulate and compute the local tensor

values. After performing the local operation, these values are then added to a global tensor.

62 Chapter 4: Automated solution of multiphysics problems involving discontinuities

1 #include <dolfin.h>

2 #include "SteadyStateDiff.h"

3
4 using namespace dolfin;

5
6 // Source term (right -hand side)

7 class Source : public Expression {

8 [...]

9 };

10 // Normal derivative (Neumann boundary condition)

11 class gN : public Expression {

12 [...]

13 };

14 // Flux across the interface

15 class gI : public Expression {

16 [...]

17 };

18 // Sub domain for Dirichlet boundary condition

19 class DirichletBoundary : public SubDomain {

20 [...]

21 };

22
23 int main() {

24 // Create mesh and function space

25 [..]

26 // Define boundary condition

27 [...]

28 // Define variational forms using SteadyStateDiff.h

29 [...]

30 // Assemble matrix and right -hand -side , include boundary conditions

31 [...]

32 // Compute solution

33 [...]

34 // Save solution in VTK format

35 [...]

36 return 0;

37 }

Figure 4.4 Implementation structure of Example 2.2 in DOLFIN (C++ interface).

The DOLFIN code is shown in Figure 4.5 [1, Chap. 6] and some part of the code generated by

the FFC for computing the local contributions of the cell to the matrix representing the bilinear

form that is associated with Example 2.2 discretized by linear elements is given in Figure 4.6.

4.2 The PUM library

While the FEniCS framework offers a very convenient approach to solve PDE-based problems

using (conventional) finite element methods, it lacks the features to solve problems involving

discontinuities that are not resolved by the computational mesh. A first approach trying to

extend the FEniCS framework for considering problems with discontinuities on unfitted meshes

was the PUM∗ library [54, 88, 89]. For this purpose, the library, which is more a proof of concept

∗The name PUM library comes from partition-of-unity method (PUM) which in some articles is used as synonym
for the eXtended finite element method.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 63

1 for (CellIterator cell(mesh); !cell.end(); ++cell) {

2 [...]

3 // Get local -to-global dofmap for each dimension

4 for (uint i = 0; i < form_rank; ++i)

5 dofs[i] = &(dofmaps[i]->cell_dofs(cell->index ()));

6 // Tabulate cell tensor

7 integral->tabulate_tensor (&ufc.A[0], ufc.w(), ufc.cell);

8 // Add entries to global tensor

9 A.add(&ufc.A[0], dofs);

10 }

Figure 4.5 Assembly in DOLFIN [1, Chap. 6]

1 // Tabulate the tensor for the contribution from a local cell

2 virtual void tabulate_tensor(double* A, const double * const * w, const

ufc::cell& c) const

3 {

4 // Extract vertex coordinates

5 const double * const * x = c.coordinates;

6 // Compute Jacobian of affine map from reference cell ,

7 // Compute determinant of Jacobian and the inverse of the Jacobian

8 [...]

9 // Array of quadrature weights.

10 static const double W1 = 0.5;

11 // Value of basis functions at quadrature points.

12 static const double FE0[1][3] = {{0.333333333333333 , 0.333333333333333 ,

0.333333333333333 }};

13 static const double FE0_D01[1][3] = {{-1.0, 0.0, 1.0}};

14 static const double FE0_D10[1][3] = {{-1.0, 1.0, 0.0}};

15 // Reset values in the element tensor.

16 [...]

17 // Coefficient declarations.

18 double F0 = 0.0;

19 for (unsigned int r = 0; r < 3; r++)

20 {

21 F0 += FE0[0][r]*w[0][r];

22 }

23 for (unsigned int j = 0; j < 3; j++)

24 {

25 for (unsigned int k = 0; k < 3; k++)

26 {

27 A[j*3 + k] += [...]

28 }

29 }

30 }

Figure 4.6 Part of the generated code for computing the local contributions to the
matrix representing the bilinear form that is associated with Example 2.2 discretized

by linear elements.

than a ready-to-use toolbox, uses and extends the key components UFL, FFC and DOLFIN. To,

at least partly, meet the requirements (XFEM 1) to (XFEM 4), the PUM library has to address

the following aspects

(Ext. 1) For the definition of variational forms, it is required to define extended function spaces

and functions.

64 Chapter 4: Automated solution of multiphysics problems involving discontinuities

(Ext. 2) In addition, concepts for computing integrals over discontinuities, to, for example,

consider fluxes or jumps, are mandatory.

(Ext. 3) Discontinuities have to be defined, e.g. by the zero level of an indicator function.

(Ext. 4) Basis functions of the conventional approximation space near the discontinuities have

to be enriched accordingly to the chosen enrichment scheme and additional degrees

of freedom have to be introduced.

(Ext. 5) Many routines providing the concepts related to the eXtended finite element methods

have to be implemented, such as a method for performing quadrature on enriched

elements.

In the following, we provide a rather detailed overview of the design and implementation of the

PUM library. Based on this presentation, we can illustrate the new concepts and made extensions

that are integrated in our toolbox miXFEM which is described in Section 4.3.

4.2.1 Design and implementation details of the PUM library

Mathematically, the PUM library is based on the classical eXtended finite element method where

the enrichment of the approximation space is introduced via Heaviside functions, see Sec-

tion 2.3.2. Within the toolbox, discontinuities can be defined by a priori knowledge of zero

level sets of steady-state level set functions, and the intersection segments of an interfaces with

an element is approximated by a linear segment. While the consideration of problems involving

more than one discontinuity is possible in principle, the implemented approach can only handle

exactly one level of enrichment. Thus, it requires a sufficiently large distance between discon-

tinuities so that they can be considered independently and no basis function is multi-enriched.

To impose interface and boundary conditions, the penalty method is used, cf. Section 2.3.

As mentioned in the beginning of Chapter 4, the main issues in regard to the automated code

generation for eXtended discretization methods is the dependency of methods on run-time data.

The PUM library resolves this issue by introducing an additional abstraction level comprised of

interface objects called GenericSurface and GenericPUM. Both objects contain purely virtual

methods and provide access to

(GenericSurface 1) the level set function, to determine the domain a given (quadrature)

point lies in,

(GenericSurface 2) functions indicating if a cell is intersected or a given point is on an

interface or facet,

(GenericPUM 1) data about the enriched elements, basis functions and degrees of free-

dom on each cell,

Chapter 4: Automated solution of multiphysics problems involving discontinuities 65

(GenericPUM 2) methods for tabulating the mentioned objects, and

(GenericPUM 3) quadrature rules for quantities on interfaces, facets, and intersected

elements,

by using the inheritance concept of C++. The generated code utilizes these interface objects so

that the generated methods are independent of the actual representation of the discontinuity and

the chosen enrichment scheme. By doing so, all required information related to the discontinuity

and enrichment, that is given by the problem’s implementation using the DOLFIN-PUM library,

can be passed during run-time to the code automatically generated by the FFC-PUM. Hence, the

implementation of methods required by the eXtended finite element method can be separated

from the automated code generation used for the discretization of partial differential equations.

In the following, the most important extension of the FEniCS’ key components UFL, FFC and

DOLFIN are presented. Similar to the previous section, we demonstrate the workflow within the

PUM library in the next sections using Example 2.2 for illustration purposes, where the interface

Γ1,2 is now unfitted to the triangulation.

4.2.1.1 Reinterpreting concepts of UFL

Technically, UFL does not offer the feature to define eXtended finite element spaces and, hence,

does not explicitly meet the requirements (Ext. 1) and (Ext. 2). However, it does provide the

necessary abstractions and concepts which, in combination with an adapted form compiler, are

used by the PUM library to represent variational forms involving discontinuous quantities.

In detail, the PUM reinterprets the UFL concepts EnrichedElement and RestrictedElement,

originally added to construct elements such as the Raviart–Thomas element. With this, an

extended finite element function space with Heaviside enrichment, whose basis functions can be

used to represent solutions with discontinuous features across a discontinuity, is introduced by

(1) defining the underlying (continuous, standard FEM) function space V FEM,

(2) restricting V FEM onto the subdomains around discontinuity using the identifier dc to

obtain V Γ,

(3) create the enriched function space V XFEM = V FEM⨁V Γ .

In regards to considering integrals over discontinuities, the PUM library introduced a new measure∫
Γ(·) dc ↔ (·) *dc. In combination with the jump operator already implemented in UFL, this

allows to impose interface conditions using the penalty method.

Considering Example 2.2 using the mathematical framework of the PUM library, i.e. extending

conventional function spaces via Heaviside enrichment, the construction of Vh according to

equation (2.20) in UFL is as follows:

66 Chapter 4: Automated solution of multiphysics problems involving discontinuities

1 CG1_c = FiniteElement("Lagrange", cell , 1)

2 CG1_0 = RestrictedElement(CG1_c , dc)

3 # Enriched spaces V_h

4 CG1_e = CG1_c + CG1_0

Once an eXtended finite element function space is declared, basis and coefficient functions as

well as the variational forms can be defined as before.

1 u = TrialFunction(CG1_e)

2 v = TestFunction(CG1_e)

3 k = ...

4 [...]

To include jumps or fluxes of functions over a discontinuity, the UFL syntax for restricting

functions on interior facets is used, that is u(’+’) and u(’-’). However, due to the newly

defined measure dc, such integrals are interpreted differently, meaning that the function is

restricted onto the positive and negative sides of a discontinuity. The discrete variational

formulation of Example 2.2 when using the penalty method to enforce interface conditions is

then given by: Find uh ∈ V 1
cg,h s.t. for all vh ∈ V 1

cg,h it is uh = gD,h on ΓD and

∫
Ω
κ∇uh · ∇vh dx+

∫
Ω
λ�uh��vh�dx =

∫
Ω
fhvh dx−

∫
ΓN

gN,hvh dx+

∫
Γ1,2

g1,2,hvh dx (4.2)

holds†, which can be implemented in UFL by

1 a = k * inner(grad(u), grad(v)) * dx + lamb * jump(u) * jump(v) *dc

2 L = f * v * dx - gN * v * ds(0) + gI * v * dS(0)

4.2.1.2 The FFC-PUM

The PUM library uses already existing concepts in UFL to specify problems involving a discon-

tinuity as high-level inputs, however, the automated code generation for such problems relies

on an extended form compiler reinterpreting the additional abstractions correctly. Hence, the

PUM compiler FFC-PUM has been developed to support new functionalities specific to the partition

of unity framework. The fundamental extensions are

(FFC-PUM 1) the addition of mechanisms for generating an intermediate code representation

for forms and function spaces involving discontinuities, and

(FFC-PUM 2) the implementation of routines to separate standard FEM terms and enriched

expressions for volume integrals, interior and exterior facet integrals and integrals

over discontinuities,

†Please note that due to q1,2 = 0, there is no penalty term on the right-hand-side.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 67

1 // STANDRAD FENICS

2 class Form_0: public dolfin::Form

3 {

4 public:

5 // Constructor

6 Form_0(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0):

7 dolfin::Form(2, 2), k(*this , 0), w(*this , 1)

8 {

9 _function_spaces[0] = reference_to_no_delete_pointer(V0);

10 _function_spaces[1] = reference_to_no_delete_pointer(V1);

11
12 _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_0 ());

13 }

14 }

1 // PUM LIBRARY

2 class Form_0: public dolfin::Form

3 {

4 public:

5 // Constructor

6 Form_0(const pum::FunctionSpace& V0, const pum::FunctionSpace& V1):

7 dolfin::Form(2, 2), k(*this , 0), w(*this , 1)

8 {

9 _function_spaces[0] = reference_to_no_delete_pointer(V0);

10 _function_spaces[1] = reference_to_no_delete_pointer(V1);

11
12 _ufc_form = boost::shared_ptr<const ufc::form>(new

poisson_form_0(V0.pum_objects ())); // <== THIS IS NEW //

13 }

14 }

Figure 4.7 Definition of the bilinear form for Example 2.2 in FEniCS (top) and the
PUM library (bottom).

While the extension concerns all steps (FFC 1) to (FFC 6), we only provide a very rough overview

of the changes and describe just the most important aspects. For more details, especially in

regards to the implementation, we refer to [54].

In principle, the FFC-PUM uses the same operational procedure as the FFC, see Section 4.1.2. In

order to keep the implementation of new methods to a minimum, the FFC-PUM makes use of

the fact that within the context of the eXtended finite element method, only a small subset of

basis functions is enriched and, therefore, needs special treatment. With respect to the code

generation this means that special code is required only for a small number of enriched cells

which are close to the discontinuity. All non-enriched cells away from the discontinuity can be

considered with the methods introduced for the conventional finite element method without any

modifications. Consequently, one of the first steps performed within the FFC-PUM is to analyze

the given UFL input and separate all expressions into standard parts that can be processed using

the FFC methods and enriched parts which require the development and use of new concepts.

These new concepts need to consider that all methods related to enriched approximation spaces

such as variational forms, finite element spaces, mapping degrees of freedom, and quadrature

now depend on information only known during run-time. As mentioned, this data is passed

68 Chapter 4: Automated solution of multiphysics problems involving discontinuities

Algorithm 1 Computing local tensors for cell integrals and integrals over intersection segments
[54, Modified version of Algorithm 1]

Input: current cell, coefficients
Output: local tensor

1: procedure Compute and map standard and enriched entries to the local el-
ement tensor for a given cell

2: tabulate values of the basis functions and/or their derivatives
3: compute and map standard entries by using standard quadrature routines
4: if no basis function is enriched then
5: end
6: else
7: if given cell is intersected then
8: compute the modified Gauss quadrature rule on the physical domain
9: else

10: map the standard Gauss quadrature rule to the physical domain
11: end if
12: for all quadrature points on given cell do
13: tabulate values of the basis functions and/or their derivatives
14: if any coefficient is defined on the test function’s discontinuous space then
15: compute the standard entries of the test/trial function that are
16: affected by the enriched part of the discontinuous coefficient
17: end if
18: compute the enriched entries of test and trial functions affected by the
19: enriched part of the discontinuous coefficient
20: end for
21: if given cell is affected by interface integral (*dc) then
22: compute the modified Gauss quadrature rule for the intersection part
23: on the physical domain
24: for all quadrature points on the intersection part do
25: tabulate values of the basis functions and/or their derivatives
26: compute the enriched entries
27: end for
28: end if
29: tabulate values into local tensor with minimum dimension
30: end if
31: end procedure

using the interface objects GenericPUM and GenericSurface. These objects, which are imple-

mented using the concept of inheritance in the C++ library DOLFIN-PUM that is described in the

next section, contain all information that concern the enrichment and the location of the dis-

continuity. In order to make the objects and their content accessible for all routines generated

by the FFC-PUM, they are passed to the generated code within the definition of the forms, see

Figure 4.7.

We illustrate the use of the interface objects and the issue of generating code that is sufficiently

generic by considering the generated routines used for computing volume integrals on elements,

see Algorithm 1. As described in Section 4.1.3, the DOLFIN assembling routines use the generated

code to locally perform quadrature on each element individually before the computed values are

Chapter 4: Automated solution of multiphysics problems involving discontinuities 69

combined within a global tensor such as the system matrix or the right-hand-side vector. When

using the eXtended finite element method, the quadrature rules depend on the discontinuity and

the enrichment that are only known at run-time. For the automated code to work, the routines

therefore have to be sufficiently general to be able to consider the possible enrichment (and non-

enrichment) of basis functions. Due to this, all routines generated with the FFC-PUM depend on

restricting all data locally for each element and initializing the corresponding quantities with

the maximum number of enrichments that may arise within the computation.

4.2.1.3 The DOLFIN-PUM library

Consisting of C++ object oriented classes, DOLFIN-PUM implements the routines required by the

eXtended finite element method. Essentially, the library consists of

(PUM 1) the mentioned interface layer between the XFEM implementation and the code gen-

erated by the FFC-PUM to transfer the data related to enriched degrees of freedom to

the generated code,

(PUM 2) methods to represent a discontinuity by the zero level set of a given scalar function,

(PUM 3) the (actual) XFEM implementation, that consists of, among others, methods for en-

riching basis functions, introducing additional degrees of freedom, evaluating enriched

functions as well as creating and managing data for enriched elements, degrees of free-

dom, their mapping, and the corresponding (modified) quadrature rules, and

(PUM 4) many other routines containing helper functions to compute subtriangulations, vol-

umes, and allowing for plotting discontinuities and results.

By overloading classes and objects already implemented in DOLFIN, the DOLFIN-PUM library

makes use of DOLFIN’s modular structure and allows for using the implemented interfaces to all

external libraries and toolboxes such as PETSc and VTK. The basis of the DOLFIN-PUM library

are the previously mentioned interface objects GenericSurface and GenericPUM (PUM 1). Both

are implemented as abstract bases classes with purely virtual member functions that are imple-

mented in derived subclasses. In regards to the GenericSurface object, all related methods,

such as routines for computing intersection points or determining the sign of a point with re-

spect to a given indicator function, are provided by a Surface class (PUM 2). The (abstract)

GenericSurface object is passed to the GenericPUM class whose subclass PUM introduces an

enrichment that is based on the location of the discontinuity. Moreover, this class addresses

(PUM 3) and implements the management of data related to the enriched basis functions and

degrees of freedom, the definition of enriched approximation spaces and the evaluation of cor-

responding quantities. For this purpose, the methods mentioned in (PUM 4) are used.

70 Chapter 4: Automated solution of multiphysics problems involving discontinuities

4.2.2 Drawbacks and missing features of the PUM library

By enhancing the FEniCS framework, the PUM library in principle allows for an easy and rapid

implementation of models for problems with discontinuities. Unfortunately, the library is only

applicable to a very limited class of problems due to several issues which, essentially, prevent

its application to multiphysics problems.

The first and most obvious drawback of the PUM library is that the framework cannot handle

multiple-enriched basis functions. Hence, it is not possible to consider problems with multiple

junctions, where interfaces meet or intersect each other. Instead, a sufficiently large distance

between discontinuities containing at least one non-enriched element is required. This also

prevents the application of the toolbox to problems with moving or evolving discontinuities.

Another at least equally fundamental issue of the toolbox’s design is the fact that all methods

generated by FFC-PUM can only take into account the enrichment of the test function’s approxi-

mation space. For a correct evaluation and computation of quantities, this prevents processing

data that lives in a different approximation space. Instead, it restricts us to use exactly one

enriched function space for approximating all quantities used in a variational form. On first

glance, this primarily has an effect on the performance as we may have to use an unnecessarily

high polynomial degree for the approximation of quantities such as the piecewise constant co-

efficient κ in Example 2.2. On second glance, this issue results in many more limitations since

it suppresses that data may depend on a different time step which, in problems with evolving

subdomains, means that it relies on a different interface position. Another consequence is that

it is not possible to project or interpolate data from one enriched function space onto another.

Last but not least, the PUM library does not provide a concept to identify discontinuities and,

hence, lacks the possibility for the imposition of different conditions on different discontinuities.

4.3 miXFEM - a multiple interfaces eXtended finite element

method based on hierarchical enrichment

For a framework to be suited for the rapid implementation and solution of multiphysics prob-

lems, we need not only to meet the conditions (XFEM 1) to (XFEM 4) but the following more

increased requirements:

(Req. 1) As multiphysics problems may consists of several subdomains and, hence, discon-

tinuities, it is mandatory that the framework can process basis functions that are

enriched by multiple discontinuities.

(Req. 2) Terms in variational formulations may consist of any combination of functions and

coefficients that live in different (conventional or enriched) function spaces. Any nu-

merical method has to accurately consider these terms, e.g., in regards to quadrature.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 71

(Req. 3) For each discontinuity, it has to be possible to impose different conditions. Therefore,

all discontinuities need to be represented individually and must be uniquely identifi-

able. For imposing boundary and interface conditions, we may need operators such

as {} and ⟨⟩, cf. Definition 3.3.

(Req. 4) Discontinuities may move or evolve in time and, hence, intersect each other. As a

consequence, we need methods that can handle all possible intersections of interfaces

with elements or with other interfaces. Moreover, the approach has to be robust with

respect to the position of the intersection segment of interface and element.

(Req. 5) Mandatory methods such as interpolation onto all possible (enriched) function spaces

as well as approaches for modifying quadrature rules for all possible situations have

to be provided.

(Req. 6) Ideally, the framework should also allow a rapid implementation of problems from

different areas and provide methods for the analysis of the convergence behavior and

numerical errors.

The hierarchical eXtended finite element method presented in Chapter 3 is a flexible method

that meets our requirements from a theoretical point of view. In regards to its implementation,

the method offers a clear structure and is, by construction, well suited to be implemented in a

framework using automated code generation, whose advantages have already been illustrated

at length in the previous sections.

4.3.1 Design and implementation details of the toolbox miXFEM

Notwithstanding the mentioned drawbacks, the PUM library’s design approach of introducing

interface objects and, hence, an additional layer of abstraction between automatically generated

code and XFEM implementation is very thought-out. In combination with its implementation

of various basic methods and concepts, the PUM library therefore provides an interesting starting

point to implement the hierarchical eXtended finite element method into a general framework.

This framework, which we call miXFEM (multiple interface eXtended finite element method), uses

essentially the same design approach as the PUM library, which means it is based on extending

the core functionalities of FEniCS by

(Appr. 1) reinterpreting concepts already implemented in UFL to introduce multiple enriched

function spaces and quantities,

(Appr. 2) implementing an extended form compiler, capable of interpreting the abstractions

correctly, to automatically generate problem related code, and

72 Chapter 4: Automated solution of multiphysics problems involving discontinuities

(Appr. 3) providing an extensive C++ framework making use of the generated code and pro-

viding a full-featured interface to third-party libraries to allow for a rapid imple-

mentation of various types of problems.

However, to meet all requirements (Req. 1) to (Req. 6) and, thus, to provide a framework for

the rapid solution of multiphysics problems involving an arbitrary number of possibly evolving

discontinuities, we need to heavily enhance the PUM library and add a lot of additional con-

cepts and methods. In the Sections 4.3.1.1 to 4.3.1.3, we briefly point out the most important

changes and extensions of the core components of FEniCS and the PUM library. In the subse-

quent Section 4.3.2, we provide more details on the actual implementation of methods for the

hierarchical eXtended finite element method. Since in miXFEM all discontinuities are described

by zero levels of level set functions whose evolution is part of the solution in many multiphysics

problems, we additionally implemented a full-featured level set toolbox. This toolbox described

in Section 4.4.1 is associated with miXFEM and provides methods for maintaining the interfaces

during the solution process. As this thesis is motivated by applications involving melting and

solidification, we also comment on deriving a non-material velocity field in Section 4.4.2.

4.3.1.1 Variational formulation of multiphysics problems in UFL

Recall that in mathematical terms, an extended approximation space Vh, constructed by extend-

ing a conventional finite element space V FEM via hierarchical Heaviside enrichment as presented

in Section 3.3.1, is given by

Vh := V FEM
⊕

i=1,...,Ndom−1
V Γi , (4.3)

cf. equation (3.37), where V Γi is the span of all basis functions enriched by Γi. To define

multiphysics problems with various discontinuities in UFL, we further abstract the concepts of

RestrictedElement and EnrichedElement similar to the approach taken by the PUM. Starting

with a conventional finite element space, we define subsets of this space by recursively restricting

it using the measure dc. Therein, each restriction corresponds to one discontinuity and one

hierarchy level and the enriched approximation space Vh is constructed by adding all restricted

elements together. The procedure is exemplary shown for V FEM = V 1
cg,h with three enrichments

in the following UFL code:

1 CG1_c = FiniteElement("CG", cell , 1)

2 CG1_0 = RestrictedElement(CG1_c , dc)

3 CG1_1 = RestrictedElement(CG1_0 , dc)

4 DG0_c = FiniteElement("DG", cell ,01)

5 DG0_0 = RestrictedElement(DG0_c , dc)

6 DG0_1 = RestrictedElement(DG0_0 , dc)

7 # Enriched spaces

8 CG1_e = CG1_c + CG1_0 + CG1_1

9 DG0_e = DG0_c + DG0_0 + DG0_1

Chapter 4: Automated solution of multiphysics problems involving discontinuities 73

Using the function spaces defined by this means, we can define test and trial functions as well

as coefficients as before, i.e.

1 u = TrialFunction(CG1_e)

2 v = TestFunction(CG1_e)

3 k = Coefficient(DG0_e)

4 [...]

and use them to define the problem at hand in variational formulation using the standard UFL

language. Thereby we meet the requirements (Req. 1) and (Req. 2) on the UFL level.

In order to comply with (Req. 3), we reuse the subdomain identification method provided

by FEniCS for specifying different volumes and facets so that discontinuities can be uniquely

identified within the variational formulation such as

1 a = [...]*dx + [...]*dc(0) + [...]*dc(1)

however, we have to make sense of this numbers in our problem implementation, see Sec-

tion 4.3.2.3.

Since we want to impose conditions at interfaces and boundaries which are unfitted to the

computational mesh by using Nitsche’s method, we additionally introduce the operators as

defined in Definition 3.3. While the jump operator is already defined‡, we can easily add the

weighted average wavg and the cross-over average cavg by

1 subvolume = Coefficient(DG0_e)

2 def wavg(v):

3 return (subvolume(’+’)*v(’+’) + subvolume(’-’)*v(’-’))/(subvolume(’+’) +

subvolume(’-’))

4 def cavg(v):

5 return (subvolume(’-’)*v(’+’) + subvolume(’+’)*v(’-’))/(subvolume(’+’) +

subvolume(’-’))

Therein, the subvolume on each side is defined accordingly to equation (3.62), which for an

element S ∈ Sh intersected by Γi0,l0 is given by

wi0 =
|S ∩ Ωi0 |

|S ∩ (Ωi0 ∪ Ωl0)|
resp. wl0 =

|S ∩ Ωl0 |
|S ∩ (Ωi0 ∪ Ωl0)|

. (4.4)

Please note that just as in the framework of the PUM library, all requirements (Req. 1) to

(Req. 3) are up to now only met on the abstract UFL level. For tackling problems involving

multiple discontinuities with different interface conditions these abstractions not only need to

be interpreted by a form compiler, but we also have to implement a C++ framework providing

the actual implementation.

‡In UFL the �·� operator is already implemented as u(’+’) - u(’-’). However due to choice in Definition
3.3, we may have to either introduce our own variant or alter the sign in some cases.

74 Chapter 4: Automated solution of multiphysics problems involving discontinuities

4.3.1.2 miXFFC - A FEniCS Form Complier to consider multiphysics problems with

discontinuities

All abstractions made within UFL have to be interpreted correctly by a form compiler. As

our approach is based on an extended use of UFL’s concepts and methods, we implemented a

new form compiler called miXFFC, which is a reworked and significantly extended version of

the FFC-PUM. While it follows the same workflow as the original FFC and FFC-PUM, several new

concept and significant extensions of the FFC-PUM are necessary to meet (Req. 1) to (Req. 6).

In particular, we now have to consider variational forms involving quantities living in different

approximation spaces which are multiple enriched by hierarchically ordered discontinuities.

Moreover, each interface may require different conditions that have to be imposed. As a result,

the code generated by miXFFC depends even more on information that is not available at the

stage when the code is generated.

This is also reflected in the most important design difference of the miXFFC in comparison

to the FFC-PUM: In miXFFC, we introduce individual interface objects GenericMIXFEM and

GenericLevelSets for each quantity used within the variational forms. These interface ob-

jects contain all relevant information concerning the eXtended approximation space, such as

the hierarchy levels and locations of the discontinuities. All interface objects corresponding to

quantities of a form are then incorporated into a new structure that is integrated as an abstract

object in the implementation generated by miXFFC, see Figure 4.8. In contrast to the FFC-PUM,

where the generated code only receives the interface objects of the test function’s approximation

space, we now provide the data for all quantities to all methods requiring information regarding

the location of the discontinuities, hierarchy, and the chosen enriched approximation space§.

In the following, we briefly address the most important concepts and extensions of miXFFC that

mostly rely on these interface objects. Please note that some concepts rely on additional

methods that are implemented in miXDOLFIN which is presented in the next section. Moreover,

we want to stress that many routines generated by miXFFC operate locally on given mesh entities,

just as it is the case when using the FFC or the FFC-PUM. As a result, we have to implement

local-to-global (and vice-versa) mapping routines.

Hierarchical enrichment: As described in Section 4.3.1.1, we now can define variational

forms that involve multiple enriched quantities on the UFL level. Unfortunately, we cannot

extract much information aside from the maximum number of possibly arising discontinuities

from the UFL input when generating the code with miXFFC. Hence, all generated routines and

structures have to be sufficiently general to process up to Ndom− 1 enrichments. Consequently,

all local tensors and structures of the automatically generated code are of maximum size which

§Since we use Nitsche’s method to impose interface and boundary conditions, we also have more coefficients
than before, see line 7.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 75

1 // PUM LIBRARY

2 class Form_0: public dolfin::Form

3 {

4 public:

5 // Constructor

6 Form_0(const pum::FunctionSpace& V0, const pum::FunctionSpace& V1):

7 dolfin::Form(2, 2), k(*this , 0), w(*this , 1)

8 {

9 _function_spaces[0] = reference_to_no_delete_pointer(V0);

10 _function_spaces[1] = reference_to_no_delete_pointer(V1);

11
12 _ufc_form = boost::shared_ptr<const ufc::form>(new

pum_form_0(V0.pum_objects ()));

13 }

14 }

1 // MIXFEM TOOLBOX

2 class Form_0: public dolfin::Form

3 {

4 public:

5 // Constructor

6 Form_0(const mixfem::FunctionSpace& V0, const mixfem::FunctionSpace& V1):

7 dolfin::Form(2, 4), k(*this , 0), nitsche(*this , 1), phi_0(*this , 2),

subvolume(*this , 3)

8 {

9 _function_spaces[0] = reference_to_no_delete_pointer(V0);

10 _function_spaces[1] = reference_to_no_delete_pointer(V1);

11
12 _ufc_form = boost::shared_ptr<const ufc::form>(new

mixfem_form_0(V0.mixfem_objects (), this->coefficients_ptr ())); // <==

THIS IS NEW //

13 }

14 // THE FOLLOWING IS NEW //

15 /// Return a pointer to the coefficients vector of the dolfin ::form

16 const std::vector<boost::shared_ptr<const dolfin::GenericFunction> >*

coefficients_ptr () const

17 {

18 return &_coefficients;

19 }

20 }

Figure 4.8 Definition of the bilinear form for Example 2.2 in the PUM library (top)
and miXFEM (bottom).

is given by¶

Nloc = NS ×Ndom. (4.5)

with NS denoting the number of standard basis functions of the conventional function space

with support on any element S ∈ Sh. In our implementation, the local representation of an

enriched function uh ∈ Vh on S ∈ Sh is therefore hierarchically ordered and given by‖

uh|S = uh(S) · vh(S)|S , (4.6)

¶Please note that, in addition to the Ndom − 1 enrichments, we also have to take into account the number of
conventional basis functions, such that it is Nloc = NS ×Ndom − 1 +NS .

‖In practical examples, most of the values in these structures for an element S ∈ Sh are zero since only a
very few discontinuities meet in one element.

76 Chapter 4: Automated solution of multiphysics problems involving discontinuities

with

uh(S) = [u1, . . . , uNS
std. coefficients

, u1,1, . . . , u1,NS
coefficients for Γ1

, . . . , uNdom−1,1, . . . , uNdom−1,NS
coefficients for ΓNdom−1

]T
(4.7)

and

vh(S)|S = [v1, . . . , vNS
std basis functions

, v1,1, . . . , v1,NS
basis functions for Γ1

, . . . , vNdom−1,1, . . . , vNdom−1,NS |
basis functions for ΓNdom−1

]T |S .
(4.8)

Introducing this order provides us with a simple way to identify the index ranges that correspond

to a given hierarchy level.

Algebraic decomposition of enriched quantities: The introduced hierarchical order of

enriched basis functions and the degrees of freedom has several advantages. For one, it allows

us to easily identify the index range containing the basis functions and coefficients belonging

to a given hierarchy level. This can be used to efficiently evaluate jumps or similar expressions.

Moreover, it provides us with a simple way to algebraically decompose each quantity into its

hierarchy levels which is important for the evaluation of quantities and the computation of

terms involving different (enriched) approximation spaces.

Evaluation of coefficients and processing terms involving different (enriched) ap-

proximation spaces: In many situations, we need to process terms involving quantities that

live in different (enriched) approximation spaces, cf. (Req. 2). One example for such a situation

is the quadrature method. In principle, there are two reasons why the approximation spaces of

two quantities differ, that is either

(Case 1) the type or the polynomial degree of the conventional finite element space that is

enriched is different, or

(Case 2) the locations of the discontinuities, and hence the enrichment, differ.

While (Case 1) naturally occurs in almost every problem, for example, in terms such as∫
Ωh
κ∇u∇v dx, (Case 2) is a result of the time discretization of terms using Rothe’s method and

is therefore related to (Req. 4). Using the same notation as in Section 3.3.3, the time derivative

of a quantity u(·, t) (which of course has to be sufficiently smooth in time) can be discretized by

a finite difference approximation ∂tu ≈ un+1−un
∆t . Shifting the part un to the right hand side and

introducing the variational formulation results in terms of type
∫
Ωn+1 unvn+1 dx, where vn+1 is

the test function considering the new interface position(s).

Irrespective of the reason which cause approximation spaces to differ, by using the interface

objects of each quantity, we can provide all data required for evaluating quantities with respect

to all approximation spaces that are of interest. By adapting the quadrature rules according to

the interface positions and the polynomial degree of the quantities’ finite element approximation,

we are able to accurately compute terms involving quantities of any (enriched) approximation

Chapter 4: Automated solution of multiphysics problems involving discontinuities 77

space. The modified quadrature rules and the subdivision of elements are implemented in

miXDOLFIN and addressed in more detail in Section 4.3.2.

Interpolation and projection of functions: Since functions living in an enriched approxi-

mation space usually do not fulfill the Kronecker-δ property∗∗, implementing nodal interpolation

schemes needs additional effort. In contrast to this, the L2 approximation uh ∈ Vh of a function

f given by ∫
Ω
uhvh dx =

∫
Ω
fvh dx, vh ∈ Vh, (4.9)

can be easily computed at first glance since it is just an additional variational form that is to be

defined within UFL and can be generated using a form compiler. Unfortunately, FEniCS, as well

as the PUM library, always performs an implicit nodal interpolation of the given function when

assembling the right-hand-side. Thereby all information regarding the discontinuous feature

are dropped.

For functions f ∈ Wh, where Wh is any (enriched or conventional) finite element function

space, miXFEM can correctly assemble the right-hand-side of equation (4.9) as this is included

in (Case 1) described in the previous paragraph. In order to also consider situations where f

is analytically defined, miXFFC generates an alternate routine to assemble the right-hand-side,

wherein the provided function f is simply evaluated accordingly to the enrichment of Vh.

Integrals over discontinuities: To consider integrals over discontinuities and impose (indi-

vidual) interface or boundary conditions, see (Req. 3), we face several challenges. Recalling

that Γi(t) :=
⋃
l̃>i Γi,l̃(t), cf. (Cond. 3) in Section 3.2.2, each zero level of an indicator function

may consist of several domain boundaries and interfaces. Thus, we first introduce a domain id

mapping concept to uniquely identify all (parts of) discontinuities.

This concept provides a mapping between the indices used within the subdomain identification

method for discontinuities on the UFL level, described in Section 4.3.1.1, and the adjacent

subdomains and the affected hierarchy levels. Since it is, for the most part, implemented in

miXDOLFIN and therefore explained in more detail in the next section, the mapping data is passed

via the interface objects to the generated code. Based on the hierarchy levels involved, we can

easily identify the basis functions and degrees of freedom that are of interest for computing

values that are e.g. required by the operators {·}, ⟨·⟩ and J·K, see Definition 3.3. Altogether, we

are able to meet (Req. 3) by this extension.

While these extensions affect several parts of the generated code, they are especially important

for computing and evaluating enriched quantities. Therefore, we close this section by pointing

out the differences in the quadrature routines of miXFEM, presented in Algorithm 2, compared to

the quadrature method as implemented in the PUM library, see Algorithm 1. Aside from allowing

basis functions to be multi-enriched with respect to different hierarchy levels, the introduction

∗∗In fact, the Heaviside enrichment used in this thesis can be shifted so that the Kronecker-δ property is
retained. However, we want to present a more general approach that can be naturally used in the FEniCS frame-
work.

78 Chapter 4: Automated solution of multiphysics problems involving discontinuities

Algorithm 2 Computing local tensors for cell integrals and integrals over interface segments
with miXFEM

Input: current cell, coefficients (including list of corresponding GenericMIXFEM objects)
Output: local tensor

1: procedure Compute and map standard and enriched entries to the local el-
ement tensor for a given cell

2: tabulate values of the basis functions and/or their derivatives
3: compute and map standard entries by using standard quadrature routines
4: if no basis function is enriched then
5: end
6: else
7: if given cell is intersected then
8: compute the modified Gauss quadrature rule on the physical domain
9: else

10: map the standard Gauss quadrature rule to the physical domain
11: end if
12: for all quadrature points on given cell do
13: tabulate values of the basis functions and/or their derivatives
14: compute the (standard) entries of all coefficients
15: for all hierarchy levels > 0 (with 0 denoting the non-enriched level) do
16: for all coefficients do
17: if curr. coefficient is enriched by curr. hierarchy level on given cell then
18: determine the enriched entries of the coefficient with respect to
19: their own enrichment corresponding to current hierarchy level
20: end if
21: end for
22: end for
23: compute the enriched entries of tensor with respect to the determined coefficients
24: end for
25: for all interface integrals (*dc(i) do
26: if given cell is affected by curr. interface integral then
27: get hierarchy level and indices of adjacent domains
28: determine affected index ranges
29: compute the modified Gauss quadrature rule for the intersection part
30: on the physical domain
31: for all quadrature points on the intersection part do
32: tabulate values of the basis functions and/or their derivatives with respect
33: to the determined index ranges and compute the enriched entries
34: end for
35: end if
36: end for
37: tabulate values into local tensor with minimum dimension
38: end if
39: end procedure

Chapter 4: Automated solution of multiphysics problems involving discontinuities 79

of individual interface objects for each coefficient is reflected in the code lines 17-20 for volume

integrals and in the lines 28 and 31-34 for interface integrals in Algorithm 2. In contrast

to the PUM library, the coefficients of a variational form are considered with respect to the

enrichment of their own eXtended approximation space, not the space associated with the test

or trial function, cf. the lines 14-19 and 25-26 in Algorithm 1. While these seem to be minor

changes, they significantly broaden the scope of the methods as we are now able to process

terms involving quantities that are defined on different (eXtended) approximation spaces.

4.3.1.3 miXDOLFIN library

The main part of the implementation of the hierarchical eXtended finite element method is

done in a C++ framework called miXDOLFIN. Just as within the PUM library, miXDOLFIN consists

of several classes providing

(miXDOLFIN 1) methods to use the interface objects GenericMIXFEM and GenericLevelSets

to pass information between the problem solving environment and the code

generated by miXFFC to transfer the data related all enriched basis functions

and degrees of freedom to the automatically generated code,

(miXDOLFIN 2) methods to represent hierarchically defined and ordered discontinuities by the

zero level sets Γi of given scalar functions φi,

(miXDOLFIN 3) a mapping to identify interfaces Γi,l ⊆ Γi, i < l, so that individual interface

conditions can be imposed for each Γi,l,

(miXDOLFIN 4) the (actual) XFEM implementation for considering multiple discontinuities,

consisting of, i.a., methods for enriching basis functions, introducing addi-

tional degrees of freedom, evaluating enriched functions as well as creating

and managing data for enriched elements, degrees of freedom, their mapping

and the corresponding (modified) quadrature rules, and

(miXDOLFIN 5) many other routines containing, for example, helper functions to process an

arbitrary number of discontinuities for

• computing subtriangulations and subvolumes,

• performing convergence analysis,

• interpolating functions onto eXtended approximation spaces, and for

• plotting discontinuities and results.

80 Chapter 4: Automated solution of multiphysics problems involving discontinuities

4.3.2 Implementation details of miXDOLFIN

Since a detailed technical description of the entire toolbox would go beyond the scope of this

section and the thesis, we only highlight some aspects of and present details regarding imple-

mentation in miXFEM in the following paragraphs. A detailed technical description of the entire

toolbox will be given in an upcoming publication.

For the presentation, we assume that the level set functions φi and their zero levels Γ̃i, i =

1, . . . , Ndom − 1, separating the domain Ω into disjoint subdomains Ωl, l = 1, . . . , Ndom, are

given. While the level set functions and, hence, the subdomains may change in time, we

consider a steady-state situation in all upcoming sections for convenience, with the exception

of the paragraph addressing the handling of time dependency. In regards to the discretization,

we further assume that the following assumptions, see for example [49], hold:

(Assumption 1) The triangulation Sh, h > 0, is non-degenerate that means for all S ∈ Sh it

is hS
ρS

≤ c ∈ R, with ρS denoting the diameter of the largest ball contained in

the element S.

(Assumption 2) The resolution of the triangulation Sh in the vicinity of each zero level Γ̃i is

sufficiently high so that for each element S ∈ Sh with S ∩ Γ̃i ̸= ∅ no element

edge is intersected twice.

Both assumptions are very common and not restrictive so that they can be easily satisfied in

all scenarios.

4.3.2.1 Discrete interface representation

We begin this section by addressing the discrete representation of Γi. Recalling that Γi ⊆ Γ̃i,

with Γ̃i being the zero level set of φi in the continuous setting, discrete approximations φi,h of

φi and Γ̃i,h of Γ̃i are needed first and foremost. To avoid the handling of complex intersections

of interfaces and elements, especially in regards to multi-junctions, we currently approximate

Γ̃i linearly. Hence, we use φi,h ∈ V 1
cg,h as finite element approximation of φi. Unfortunately,

the low polynomial degree of the approximation space has turned out to be unfavorable for

problems involving terms related to second derivatives of the interface such as curvature. Hence

for considering such problems, we use an approach very similar to [29] and introduce a second

triangulation S2h such that Sh can be obtained by regular refining S2h
††. The idea is now to

approximate φi by φi,2h ∈ V 2
cg,2h and define φi,h = Ilin(φi,2h) by linearly interpolating φi,2h

on Sh, cf. Figure 4.9. Let Γ̃i,h denote the corresponding zero level set, the discrete and

††In practice, one first choose S2h and then construct Sh.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 81

(a) Quadratic approximation Γi,2h of
the interface Γi on S2h.

(b) Linear approximation Γi,h of the
interface Γi on Sh.

Figure 4.9 2D visualization of Γi,2h on an element S′ ∈ S2h and Γi,h = Ilin(φi,2h) on
the elements Sl ∈ Sh, l = 1, 2, 3, 4, obtained by regular refining S′ ∈ S2h.

hierarchically active interface Γi,h is then given by

Γi,h : = {x ∈ Γ̃i,h :
i−1∏
l=1

H(φl,h(x)) = 1}

= {x ∈ Ω : φi,h(x) = 0 ∧
i−1∏
l=1

H(φl,h(x)) = 1},
(4.10)

cf. equation (3.33). For practical reasons, we always compute the complete zero levels Γ̃i,h and

later define the active parts Γi,h ⊆ Γ̃i,h by evaluating the product of the Heaviside functions

as shown in (4.10). The zero levels Γ̃i,h are uniquely given by the linear intersection segments

Γ̃i,h,S , with Γ̃i,h :=
⋃
S∈Sh

Γ̃i,h,S , which can be computed by the following two-step algorithm:

(Step 1) First, we construct the set S Γ̃i,h

h containing all elements intersected by Γ̃i,h. For this

purpose, we compute the values zE = φi,h(xE,1)φi,h(xE,2), where xE,l denotes the

l-th vertex of edge E ∈ E(S) and E(S) contains all edges of the simplex S ∈ Sh. If

we have zE ≤ 0 and φi,h(xE,l) > 0 for some l ∈ {1, 2}, we mark the edge E and the

element S ∈ Sh as intersected and add it to the set S Γ̃i,h

h .

(Step 2) In a second step, we loop over all elements S ∈ S Γ̃i,h

h and compute the intersection

points which can be easily done since Γ̃i,h is linear.

Please note that (Step 1) allows for an unique assignment of intersection points to edges. While

such an assignment is obvious for edges E ∈ E(S) with zE < 0, we also need to consider

situations with zE = 0, where a zero level set Γ̃i,h directly intersects a vertex or aligns with an

element edge or facet so that φi,h(xE,l) = 0 for least one l ∈ {1, 2} of the edge E. In order to

also have an unique assignment for such situations, we only consider edges E as intersected,

where it is φi,h(xE,l) > 0 and φi,h(xE,l̃) ≤ 0, for l, l̃ ∈ {1, 2} with l̃ ̸= l, but neglect edges with

φi,h(xE,l) = 0 and φi,h(xE,l̃) < 0. This approach is visualized in Figure 4.10. Among others,

the resulting unique assignment is important for generating a subtriangulation for intersected

elements for performing quadrature, as we will see in the next paragraph.

82 Chapter 4: Automated solution of multiphysics problems involving discontinuities

(a) Interface Γi,h aligns with the
facet of the elements S and S′.

(b) Values in the endpoints
of edges.

(c) Edges E and E′

are marked as inter-
section by our ap-
proach.

(d) Our approach
marks S as inter-
sected element.

Figure 4.10 Visualization of unique assignment of intersections to element edges for
an interface aligning with an element edge (2D).

𝑆𝑆 ∈ 𝒮𝒮ℎ

�Γ𝑖𝑖,ℎ ⊂ �𝜑𝜑𝑖𝑖,ℎ ∈ 𝑉𝑉cg,ℎ
2

Γ𝑖𝑖,ℎ ⊂ 𝜑𝜑𝑖𝑖,ℎ ∈ 𝑉𝑉cg,ℎ
1

�𝜑𝜑𝑖𝑖,ℎ < 0
𝜑𝜑𝑖𝑖,ℎ > 0

�𝜑𝜑𝑖𝑖,ℎ,𝜑𝜑𝑖𝑖,ℎ > 0

�𝜑𝜑𝑖𝑖,ℎ,𝜑𝜑𝑖𝑖,ℎ < 0

𝑞𝑞1

𝑞𝑞2

Figure 4.11 2D visualization of the approximation error when constructing a linear
representation of a discontinuity using φi,h ∈ V 2

cg,h.

Remark 4.1 (Comment on the efficiency). Actually, the idea in [29] is based on introducing

a regularly refined mesh Sh̃/2 only for elements S ∈ Sh̃ intersected by the zero level set of a

quadratic function φh̃. On these elements, there is a one-to-one relation between the degrees of

freedom φh̃ and its linear approximation Ilin(φh̃/2) which allows for an efficient computation of

the quantities. Alternatively (or as an addition to this), it is much more efficient to introduce

a narrow band around the zero level set of each φi,h̃. Then we only have to compute all level

set related quantities and maintain each level set function only on these subdomains instead of

considering the complete domain Ω. We comment on the narrow band approach in Section 4.4.1.

Remark 4.2 (Conformity between the polynomial degree of φi,h and Γ̃i,h). Naively, one could try

to approximate φi by φi,h ∈ V m
cg,h,m ≥ 2, and just use the intersection points qm,m = 1, . . . , Nq,

of the function φi,h and the element edges to construct linear intersection segments Γ̃i,h,S and

define Γ̃i,h :=
⋃
S∈Sh

Γ̃i,h,S . However, such a construction leads to an undefined behavior if we

try to determine the domain containing x ∈ S by the evaluation of φi,h(x) as the values and,

in particular, signs may be not consistent with the constructed Γ̃i,h, see Figure 4.11.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 83

(a) Initial state, S ∈ Sh is
intersected by Γi,h.

(b) Steps (Subtr. 1) and
(Subtr. 2).

(c) Steps (Subtr. 3) and
(Subtr. 4).

Figure 4.12 2D visualization of the scheme for the generation of a subtriangulation.

4.3.2.2 Subtriangulation and quadrature

An important aspect when using eXtended discretization methods is the subdivision of inter-

sected elements S ∈ SΓi,h

h to perform quadrature. To illustrate the scheme which extends the

idea of [54] and is implemented in miXFEM for generating subtriangulations of such elements, we

first consider an element S ∈ SΓi0,h

h intersected by only one discrete interface Γi0,h. Afterwards,

we comment on how to extend the approach to situations where S is intersected by multiple

interfaces. Now, given an intersected element S ∈ SΓi0,h

h and the interface Γi0,h, we perform the

following steps to generate a corresponding subtriangulation:

(Subtr. 1) Subdivide an element S into two parts P1 and P2 using Γi0,h,S ⊂ Γi0,h. The parts

Pl are now defined as polygon by the original vertices vk, k = 1, . . . , d+1, of S and

the intersection points qm, m = 1, . . . , Nq.

(Subtr. 2) Compute the center of gravity cl for each part Pl, l = 1, 2.

(Subtr. 3) Create simplicial subtriangulation Ll(S) of the parts Pl by connecting the original

vertices vk, k = 1, . . . , d+ 1, of the simplex S contained in Pl with the intersection

points qm, m = 1, . . . , Nq, and the respective center cl of gravity.

(Subtr. 4) A local subtriangulation called local mesh is then given by L(S) = L1(P1)∪L2(P2).

All steps are visualized for a 2D situation in Figure 4.12. The presented subdivision approach

can easily be extended to consider multiple-intersected elements by performing the subdivision

recursively, starting with the interface of highest hierarchy, cf. Figure 4.13. All following

subdivisions then have to be performed respective to the previous generated subelements of the

local mesh. The complete procedure is given in Algorithm 3.

Using the generated subtriangulation, we now can perform quadrature by transforming the

quadrature schemes onto the subelements. Just as in the conventional finite element method,

84 Chapter 4: Automated solution of multiphysics problems involving discontinuities

(a) Initial state, S ∈ Sh

is intersected by Γi,h and
Γl,h.

(b) Perform subdivision
scheme for Γi,h.

(c) Perform subdivision
scheme for Γl,h considering
the already generated local
mesh.

Figure 4.13 2D visualization of the subtriangulation scheme for the generation of a
subtriangulation of an multi-intersected element.

Algorithm 3 Generation of a local mesh for each intersected element

Input: Γi,h, S
Γi,h

h , i = 1, . . . , Ndom − 1

Output: local meshes L(S), S ∈ SΓi,h

h

1: procedure Generation of a local mesh for each intersected element

2: Define SΓ
h :=

⋃
i=1,...,Ndom−1 S

Γi,h

h

3: for all S ∈ SΓ
h do

4: initialize local mesh L(S) by L(S) := S
5: for all i = 1, . . . , Ndom − 1 do
6: for all S̃ ∈ L(S) do
7: if Γi,h ∩ S̃ ̸= ∅ then
8: refine S̃ and generate the local mesh L(S̃) by performing the
9: steps (Subtr. 1) to (Subtr. 4)

10: end if
11: end for
12: update local mesh L(S)
13: end for
14: end for
15: end procedure

we can use the usual quadrature scheme and transform the points and weights to the generated

subelements. The approach guarantees that the quadrature points of each subdivided element

are located in exactly one domain so that functions can be evaluated in these points, however, we

have to correctly scale the weights with the volume of the elements S′ ∈ L(S). The presented

scheme for the generation of a local mesh for intersected elements is also important, among

others, for evaluating functions, considering time-dependent problems, and plotting the results

as we will see in the following sections.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 85

4.3.2.3 Interface id mapping and imposing boundary and interface conditions

Using the hierarchical level set method to decompose a domain Ω into subdomains, we have

Γi =
⋃

l>i Γi,l, see (Cond. 3) in Section 3.2.2, which means that we represent the internal

boundaries Γi,l, l > i, by (parts of) one zero level set Γi ⊆ Γ̃i, i = 1, . . . , Ndom − 1. As

we usually have to impose a different condition on each interface Γi,l ⊆ Γi when modeling

multiphysics problems, we need an approach to (re-)identify the respective parts Γi,l ⊆ Γi and

the adjacent subdomains Ωi and Ωl during run-time. In order to do this, a domain id mapping

concept has been implemented which affects all components of miXFEM.

Given a discrete variational formulation of a problem with several interfaces, the concept consists

of two levels. Firstly, we define (in ascending order) dc(k) measures, k ∈ N0, within the

UFL file that implements the discrete variational formulation of the problem. The indices of the

measures are then passed to the code generated by miXFFC. Secondly, we introduce a mapping

in the implementation of the problem in miXDOLFIN to identify the interfaces for imposing the

(correct) interface condition. Therefore, we define a vector and begin with assigning the zero

level sets to the interface measures. The following code shows how to assign the zero level set

Γi,h to the interface measure dc(l)

1 [...]

2 // create domain_id_map

3 std::vector<uint > domain_id_map(NumberOfMeasures);

4 [...]

5 domain_id_map[l] = i; // Assign zero level set number i to dc measure k

6 [...]

For all hierarchically active zero level sets Γi,h that consists of multiple interfaces Γi,l,h with

Γi,h =
⋃

l>i Γi,l,h, we additionally use the information provided by the respective level set

function ϕl,h to separate Γi,h into parts with ϕl,h(x) < 0 and ϕl,h(x) > 0, x ∈ Γi,h. The

corresponding implementation where an interface Γi,h is separated into two parts Γi,l0,h and

Γi,l1,h by the level set function ϕl0,h is given by

1 [...]

2 // create domain_id_map

3 std::vector<uint > domain_id_map(NumberOfDc);

4 [...]

5 domain_id_map[l0] = i; // Assign zero level set number i to dc measure l0

6 domain_id_map[l1] = i; // Assign zero level set number i to dc measure l1

7 [...]

8 // create restriction vector

9 std::vector<std::vector<std::pair<uint ,bool> > >

domain_id_restrictions(NumberOfDc ,std::vector<std::pair<uint , bool> >(0));

10 [...]

11 domain_id_restrictions[l0].push_back(std::make_pair(i,false));

12 domain_id_restrictions[l1].push_back(std::make_pair(i,true));

13 [...]

86 Chapter 4: Automated solution of multiphysics problems involving discontinuities

(a) Setting. (b) Level set functions and dc measures.

Figure 4.14 Visualization a domain id mapping possibility for Example 3.2.

Therein, we use boolean values to identify the sign of ϕl,h(x) with false corresponding to

ϕl,h(x) < 0 and true corresponding to ϕl,h(x) > 0. Both vectors are passed to the code

generated by miXFFC to impose the correct interface condition. In addition, the concept allows

for identifying the adjacent domains which is crucial for the operators �·�, {·}, and 〈·〉 that are
required by Nitsche’s method.

Remark 4.3 (Simple domain id map). Using the restriction vector and the sign of the level set

functions to separate a zero level set Γi,h into its components Γi,l,h is only necessary, if we want

to consider a different type of interface condition on parts Γi,l0,h,Γi,l1,h ⊂ Γi,h, i.e., Dirichlet

conditions on Γi,l0,h ⊂ Γi,h and flux/jump conditions on Γi,l1,h ⊂ Γi,h. Otherwise, we can

simply introduce piecewise defined functions to impose different conditions of the same type on

all interfaces. However, the use of the domain id mapping concept can improve the readability

and understandability of the code.

Example 4.1. Considering the setting in Example 3.2, the configuration Γ1 = Γ1,2 ∪ Γ1,3 and

Γ2 = Γ2,3 can be realized using the domain id mapping concept as depicted in Figure 4.14‡‡ by

1 std::vector<uint > domain_id_map(3);

2 domain_id_map[0] = 0; // Assign zero level set number 0 to dc measure 0

3 domain_id_map[1] = 1; // Assign zero level set number 1 to dc measure 1

4 domain_id_map[2] = 0; // Assign zero level set number 0 to dc measure 2 =>

we need to include a restriction:

5 std::vector<std::vector<std::pair<uint , bool> > > domain_id_restrictions(3,

std::vector<std::pair<uint , bool> >(0));

6 // Restrict measure dc(0) to the region with $\varphi_1 <0$

7 domain_id_restrictions[0].push_back(std::make_pair(1,false));

8 // Restrict measure dc(2) to the region with $\varphi_1 >0$

9 domain_id_restrictions[2].push_back(std::make_pair(1,true));

‡‡Please note that since C++ begins numbering with 0 instead of 1, all indices of subdomains and interfaces
are shifted so that Γ1 is denoted by the index 0 in the code snippet.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 87

4.3.2.4 Evolving interfaces

Currently, we discretize time-dependent problems with moving or evolving interfaces by apply-

ing Rothe’s method, see Section 3.3.3§§. Therefore, we first discretize the time derivative by

the implicit Euler scheme and then apply spatial discretization. By doing so, two very different

issues arise in regards to the implementation: firstly, we need to efficiently redefine the time

levels of data and, secondly, we have to process terms involving different time levels in the

discrete variational forms, cf. Section 3.3.3.

General implementation approach: For an efficient handling of data, we make extensive

use of boost shared pointers when implementing problems in miXDOLFIN. Approximating the

time derivative with the implicit Euler method, we only have to introduce two versions of a

time-dependent object O(t), and ”old” version O(tn) and a ”new” version O(tn+1). By using

and redirecting pointers to these objects in the computational scheme, we only have to create

the new data at each time level, as shown in the following code snippet

1 [...]

2 boost::shared_ptr<myObject> object_new;

3 boost::shared_ptr<myObject> object_old;

4 [...]

5 object_new = boost::make_shared<myObject>(t0);

6 [...]

7 while (t < T)

8 {

9 [...]

10 object_old = object_new;

11 object_new = boost::make_shared<myObject>(t);

12 [...]

13 }

Processing terms involving different time levels: Using Rothe’s method can yield inte-

grals such as
∫⋃Ndom

i=1 Ωi(tn+1)
f(tn)v(tn+1) dx. As the positions of Γi(tn) and Γi(tn+1) are usually

different, we need to evaluate and process the quantities f and v considering different enrich-

ments. For this purpose, we interpret the different locations at the time levels as different

interfaces (with corresponding different enrichments), which is a situation which can be natu-

rally handled within our framework and the presented subdivision approach, see Section 4.3.2.2.

On these subtriangulation, we can evaluate functions correctly with respect to their enrichment

and perform quadrature for the assembling of tensors.

4.3.2.5 Miscellaneous

After highlighting some methods and features of miXFEM in some detail, we now briefly describe

some other important aspects.

§§Of course, we only consider problems (or a scaled variant) which are sufficiently smooth in time.

88 Chapter 4: Automated solution of multiphysics problems involving discontinuities

Managing enriched data: Managing the data corresponding to basis functions and the de-

grees of freedom is mandatory in any implementation of the finite element method. However,

designing such concepts for eXtended discretization methods is complex as the enriched data

may change due to the evolution or dissolution of discontinuities. By implementing the hi-

erarchical eXtended finite element method into the automated code generation framework of

FEniCS, matters become significantly more challenging. Reasons for this are that the compiler

knows nothing about the actual discontinuities and enrichment but only the maximum number

of possible arising discontinuities and, in addition, almost all methods generated by miXFFC op-

erate locally on cells or facets and therefore need to be identified in the global structures. In

our approach, we introduce offsets to define local and global structures that order quantities

based on the hierarchy levels. By doing so, basis functions and coefficients are represented as

described in Section 3.3.1 and Section 4.3.1.2. The concept is sufficiently general which means

that it can also consider vector-valued elements or combined resp. mixed elements such as the

Taylor-Hood element.

Additional assembler: The evaluation of quantities and the assembling of tensors is not

straight forward when using an eXtended discretization method since the Kronecker-δ property

is usually lost. This also makes the interpolation of functions given in terms of symbolic expres-

sions onto eXtended function spaces more difficult. To take this into account in our framework,

several new assembler methods are implemented in miXFEM which can pass given functions

represented by dolfin::Expressions and data corresponding to the enrichment that is sum-

marized to GenericMIXFEM objects to the tabulate tensor routines generated by miXFFC, cf.

Section 4.3.1.2. Using the expressions, we can simply generate approximations of given functions

by computing the L2-projection, cf. Section 4.3.1.2. By passing the GenericMIXFEM objects

of all coefficients involved in a discrete variational formulation to the generated code, we can

evaluate and process terms involving different (enriched) approximation spaces.

Plotting: For the visualization of computed data, we store our results in the VTK output

format so that they can be processed using programs such as ParaView [90]. To correctly

visualize discontinuous features within functions, we have to introduce multi-valued vertices.

Moreover, the data needs to be adapted to fit into the structures provided by VTK. For this we

make use of the already generated subtriangulations, see Section 4.3.2.2, which are stored as a

local mesh for each intersected element.

Error computation and visualization: The miXFEM framework provides methods to com-

pute numerical approximation errors such as ∥uref − uh∥ which are of interest, for example,

when convergence or parameter studies are performed. In general, such error can be easily

computed when the reference solution uref is a known analytical function by projecting it onto

the enriched approximation space of the numerical solution and computing the difference. How-

ever, more effort is required if uref is also a computed approximation which has been obtained

by, e.g., using a finer mesh or different polynomial degree than the current numerical solution

uh. This is because now we need to compare functions of different approximation spaces where

Chapter 4: Automated solution of multiphysics problems involving discontinuities 89

the enrichment data differs. To also compute approximation errors for such situations, we can

define ∥uref − uh∥ as dolfin::Expressions and interpret it as a functional which can be com-

puted using one of previously mentioned new designed assemblers. To make the analysis easier,

the library Gnuplot [91] can be linked to miXFEM to automatically plot convergence results.

4.4 Additional numerical methods

Aside from the actual hierarchical eXtended finite element method and its implementation, the

numerical solution of multiphysics problems often requires additional methods. One reason for

this is that, for example, the evolution of the discontinuities is part of the solution in many

multiphysics problems. As mentioned before, the location of discontinuities in miXFEM are given

by zero levels of signed distance functions and their evolution is taken into account by the level

set method. Unfortunately, the level set method introduces additional challenges when used

within the finite element method since it neither preserves the signed distance property nor

does it conserve the volume. Moreover, additional stabilization techniques are necessary when

problems are dominated by an advection term. For these reasons, we implemented a level set

toolbox, which can be integrated into miXFEM, that provides methods for stabilizing the level

set problem, reinitializing a given level set function, and correcting the arising volume defect.

For efficiency, we also implemented structures to restrict the level set problem to a small region

called narrow band. All this is presented in Section 4.4.1

The level set method describes the evolution of function in a given velocity field. In the appli-

cations motivating this thesis, we consider problems involving phase changes but not material

flow. Hence, the corresponding velocity may result from the Stefan condition [15, 92] and is

therefore non-material. As a consequence, we need methods to evaluate the energy fluxes, com-

pute the (normal) interface velocity, and extend this velocity into the vicinity. The approaches

used within this thesis are described in Section 4.4.2.

4.4.1 Level set toolbox

While the level set toolbox does not directly belong to miXFEM, it provides methods for moving

and evolving discontinuities represented by zero levels of level set functions as well as routines

for maintaining the level set functions with respect to the signed distance property and volume

conservation. The level set toolbox, which has been implemented in collaboration with former

master student T. Klock, has been presented in more detail in [2, 93]. At this point, we

sum up the most important concepts that are adapted from [29, 94, 95] but omit detailed

implementation aspects.

Since all level set functions can be considered independent from each other, we simplify the

notation and describe all methods using only one level set function φ with zero level Γ for

90 Chapter 4: Automated solution of multiphysics problems involving discontinuities

the presentation. Please keep in mind that this function can be any φi, i = 1, . . . , Ndom − 1.

Moreover, we use the notation h̃ instead of h to describe the mesh size. This is because of the

possible difference in the mesh size used for solving the level set and the actual problem, see

Section 4.3.2.1.

4.4.1.1 Discretization

Recall that the evolution of an interface separating two domains can be described by the level

set method as shown in Section 2.1. Then, the strong formulation of the problem reads: Given

a domain Ω and a time interval [t0, tf], find φ ∈ C1(Ω× (t0, tf)) ∩ C0(Ω̄× [t0, tf]) such that

∂φ

∂t
+ V⃗ · ∇φ = 0 in Ω× [t0, tf],

φ(·, t0) = φ0 in Ω,

(4.11)

(4.12)

hold. As usual, the problem is transfered into a variational formulation which can be discretized

by either variant of the method of lines.

Using Rothe’s method, the time interval [t0, tf] is as before discretized by Nt + 1 time steps

tn = t0+n∆t, n = 0, . . . , Nt, with ∆t denoting the time step size. Let θ ∈ [0, 1] be a parameter∥

and φn(·) ≈ φ(·, tn) be an approximation of the level set function φ at time tn. The full discrete

level set problem on a triangulation Sh̃ using the θ-scheme for time discretization then reads:

Find φn+1
h̃

∈ V m
cg,h̃

, with m ≥ 1, such that

∑
S∈Sh̃

Ñ
φn+1
h̃

− φn
h̃

∆t
+ θV⃗ n+1 · ∇φn+1

h̃
+ (1− θ)V⃗ n · ∇φn

h̃
, vh̃

é
L2(S)

= 0, (4.13)

holds for all vh̃ ∈ V m
cg,h̃

. In our implementation and, hence, the following methods, we choose

m = 2 and, in most cases, h̃ = 2h with h denoting the mesh size for the actual problem. The

interface is then represented as described in Section 4.3.2.1.

4.4.1.2 Stabilization

It is well known that solving hyperbolic PDEs with standard finite element methods can be

unstable, especially for high velocities V⃗ . This issue can be resolved by using a stabilization

method [96], which slightly reformulates the discretized problem. A well known method for

this is the Streamline-Upwind/Petrov-Galerkin (SUPG) stabilization [97] which is also called

Streamline diffusion stabilization [29].

∥Note that θ = 0 leads to the explicit Euler-scheme while θ = 1 results in the implicit Euler-scheme.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 91

As proposed in [29], special test functions ṽh̃ ∈ L2(Ω) of the form

ṽh̃|S := vh̃ + δSV⃗
n+1 · ∇vh̃, S ∈ Sh̃, vh̃ ∈ V m

cg,h̃

with δS ∈ [0, 1], can be used for stabilization so that equation (4.13) reads

∑
S∈Sh̃

Ñ
φn+1
h̃

− φn
h̃

∆t
+ θV⃗ n+1∇φn+1

h̃
+ (1− θ)V⃗ n∇φn

h̃
, vh̃ + δSV⃗

n+1 · ∇vh̃

é
L2(S)

= 0. (4.14)

In literature, it is suggested to use a δS that depends on the velocity V⃗ and the diameter of the

simplex h̃S = diam(S), for S ∈ Sh̃,

δS = c
h̃S

max{δ0, ||V⃗ n+1||∞,S}
, (4.15)

with 0 < δ0 ≪ 1 and c ∈ [0, 1] with c = 0 corresponding to the case that no stabilization is

applied.

4.4.1.3 Reinitialization

From a numerical point of view, it is beneficial to have a level set function φh̃ which is close

to a signed distance function, see Section 2.1. Unfortunately, this property may be lost during

the evolution of the level set function in time due to various reasons, such as discretization

errors, insufficient approximation of the curvature, and topological changes. To regain the

signed distance property, the level set function is reinitialized with a variant [29] of the Fast

Marching Method (FMM) [98]. This approach provides a signed distance approximation φ̃h̃ of

φh̃.

Given φh̃ ∈ V 2
cg,h̃

on Sh̃, we first compute the linear interpolation φh̃/2 = Ilin(φh̃) of φh̃ on the

regularly refined triangulation Sh̃/2. Let V(S) denote the set of vertices given on a simplex

S ∈ Sh̃/2 and V := V(Sh̃/2) be the (discrete) set of all vertices of Sh̃/2
∗∗. The patch of order

l + 1, l ≥ 1, of elements related to a vertex v ∈ V(S), S ∈ Sh̃/2 is given by

P l+1(v) := {S ∈ Sh̃/2 : V(S) ∪ V(P l(v)) ̸= ∅} with P1(v) := {S ∈ Sh̃/2 : v ∈ V(S)}. (4.16)

The basic idea of the FMM, which consists of two phases, is to compute distance values d̂(v) for

any vertex v ∈ V thereby taking advantage of the fact that all information will only propagate

outwards from the zero level set of the function.

∗∗Please note that by choosing a linear Lagrangian basis, vertices and degrees of freedom coincide.

92 Chapter 4: Automated solution of multiphysics problems involving discontinuities

Initialization phase: Firstly, distance values d̂(v) for v ∈ V(SΓ
h̃/2

) are computed by

d̂(v) = min
S∈P2(v)

dist(v,Γh̃/2,S),

where the extended patch P2(v) including also all second neighbor simplices is considered for

stability reasons, see [29].

Extension phase: The initial computed values are propagated into the far field. Therefore,

the finished set

VF = {v ∈ V(Sh̃/2) : d̂(v) is computed},

is introduced which stores already processed vertices. Additionally, an active set is defined by

VA = {v ∈ V(Sh̃/2) : At least one neighbor vertex of v is in VF }

which stores vertices that are likely to be dealt with next since they are neighbors of already

processed vertices. The process of choosing the vertex v ∈ VA which is considered next is based

on a tentative distance function

d̃(v) = min{d̃S(v) : S ∈ P1(v) with V(S) ∩ VF ̸= ∅}

with d̃S(v) defined as

d̃S(v) = d̂(PW (S)(v)) + ∥v − PW (S)(v)∥.

Therein,

PW (S)(v) = argminx∈conv(W (S))∥v − x∥.

is the minimum distance projection of v onto the convex hull W (S) = V(S) ∩ VF . With this

construction, d̃S(v) approximates the distance of v to the discrete interface Γh̃ by using the

simplex S (which has at least one vertex in VF) as an information propagator. From these

values, the minimum value for d̃S(v) is used as the tentative distance value if all processed ver-

tices/simplices are considered as information propagators. Once values d̃(v) can be computed,

the extension phase works by extracting the current nearest vertex v∗ = argminv∈VA
d̃(v), set-

ting d̂(v∗) = d̃(v∗), removing this vertex from the active set VA and adding it to the finished

set VF . Then the active set VA and the tentative values d̃(v), v ∈ VA are updated according to

the updated finished set and the procedure is repeated until all vertices are processed.

As the result of the FMM, we obtain unsigned distance values d̃(v) for every vertex v of the

refined triangulation Sh̃/2. These uniquely define a reinitialized piecewise quadratic level set

function φ̃h̃ ∈ V 2
cg,h̃

due to the one-to-one relation between vertices in Sh̃/2 and degrees of

freedom in V 2
cg,h̃

. Note that the values d̃ are unsigned, hence a multiplication with the correct

sign is necessary before using them as new coefficients of φ̃h̃.

Chapter 4: Automated solution of multiphysics problems involving discontinuities 93

4.4.1.4 Volume correction

As analyzed in [99], the level set method does not preserve the volume, although the loss in

volume decreases with decreasing mesh size. The same is true for the reinitialization method.

As a consequence, a volume correction method is needed to overcome this issue. This method

can be used, for example, after the initialization phase of the FMM in which the new (unsigned)

distance values d̂(v) for v ∈ V(SΓ
h̃/2

) are computed. In general, there are two possibilities for

such methods, a global volume correction method or a local approach to preserve the volume.

In the following, we describe the more elaborated local approach, which is an adapted version

of the localized correction algorithm presented in [95], and comment on how to implement a

global method afterwards. For a more detailed description, we refer to [95] and [2].

Consider the linear level set functions φh̃/2 = Ilin(φh̃) and its reinitialized version φ̃h̃/2 = Ilin(φ̃h̃)
on Sh̃/2. For arbitrary functions ϕ, ψ, we define the volume functional

∆V (ϕh̃, ψh̃, S) =

∫
S∩{x∈Ωh̃ :ϕ<0}

dx−
∫

S∩{x∈Ωh̃ :ψ<0}

dx, S ∈ Sh̃/2.

Let ΩΓh̃
=
⋃
S∈S

Γ
h̃

h̃/2

S be the domain of all intersected simplices and V 1
cg,h̃/2

(ΩΓh̃
) be the corre-

sponding function space. Assuming that the values d̂(v), computed in the initialization phase

of the FMM, define a tentative level set function ϕ̃ten ∈ V 1
cg,h̃/2

(ΩΓh̃
), we adjust the values of

this function in the following four steps to preserve the volume:

(Step 1) Compute an offset cS ∈ R for every S ∈ SΓh̃

h̃/2
†† such that

∆V
Ä
Ilin(φh̃), ϕ̃

ten(·) + cS , S
ä
= 0

holds. Thereby the addition ϕ̃ten(·) + cS is understood as an addition in the degrees

of freedom, i.e. cS is added to every coefficient of ϕ̃ten.

(Step 2) Compute a continuous, piecewise linear offset function ϕcorr ∈ V 1
cg,h̃/2

(ΩΓh̃
) by aver-

aging values cS on P1(v) so that a value ϕcorr(v) for v connected to S ∈ SΓ
h̃/2

is given

by

ϕcorr(v) :=
1

|S ∈ P1(v) ∩ SΓh̃

h̃/2
|

∑
S∈P1(v)∩S

Γ
h̃

h̃/2

cS .

(Step 3) Compute a global multiplier mΩ ∈ R so that

∆V
Ä
Ilin(φh̃), ϕ̃

ten(·) +mΩϕ
corr(·),Ωh̃

ä
= 0.

Since this is the second optimization step, the resulting mΩ is usually close to 1.

††In principle, this corresponds to computing a function Ψ ∈ V 0
dg,h̃/2

.

94 Chapter 4: Automated solution of multiphysics problems involving discontinuities

(Step 4) Adjust the d̂(v) values for vertices that are processed in the FMM initialization phase

by

d̂(v) :=

⎧⎪⎪⎨⎪⎪⎩
d̂(v)−mΩϕ

corr(v), for v ∈ {x ∈ Ωh̃ : Ilin(φh̃) < 0},

d̂(v) +mΩϕ
corr(v), for v ∈ {x ∈ Ωh̃ : Ilin(φh̃) > 0},

and proceed to the extension phase of the FMM with these modified d̂(v) values.

The roots in steps 1 and 3 can be computed by using the regula falsi algorithm in the Ander-

son/Björk variant [100] as shown in [2].

Remark 4.4 (Global approach for volume conservation). A simpler approach to correct the

volume defect is based on computing only a global offset cΩ ∈ R in (Step 1). Using this value,

we can easily define ϕcorr ∈ V 1
cg,h̃/2

(ΩΓh̃
) and proceed with (Step 4). Unfortunately, numerical

studies show that this global approach tends to also preserves the shape of the geometry which

is undesirable in many applications.

4.4.1.5 Narrow band approach

A major drawback of the level set method as an interface representation technique is that a

higher dimensional object (the level set function) is used to represent a lower dimensional object

(the interface). To overcome this drawback, the narrow band level set method [94] can be used

whose basic idea is to restrict the task of solving the level set problem, the reinitialization, and

the volume correction to a narrow band around the current interface.

Construction of the narrow band(s): The narrow band method is based on the assumption

that the given discrete level set function φh̃ is approximately a signed distance function so that

the values of the degrees of freedom are approximately equal to the exact distance of a vertex

to the interface. Then, the inner narrow band is defined by

VINB = {v ∈ V(Sh̃) : φh̃(v) < γh̃}, (4.17)

with γh̃ = γh̃, γ ∈ Z+, and h̃ = maxS∈Sh̃
diam(S), and the outer narrow band is given by

VONB = VINB ∪

Ö ⋃
v∈VINB

⋃
S∈P1(v)

V(S)

è
. (4.18)

The outer narrow band includes all vertices of the inner narrow band set as well as all vertices

of the first neighbor patch of all simplices in the inner narrow band domain. With these set,

the corresponding domains ΩINB := {S ∈ Sh̃ : V(S) ⊂ VINB} and ΩNB = ΩONB := {S ∈ Sh̃ :

V(S) ⊂ VONB} can be defined.

Introduction of a cut-off function: Since solving the original level set problem on the

narrow band often leads to oscillations at the narrow band boundaries, cf. [94], a discrete

Chapter 4: Automated solution of multiphysics problems involving discontinuities 95

cut-off function

ζh̃(φh̃) = ζh̃(φh̃(x, t)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 for

⏐⏐⏐φh̃(x, t)⏐⏐⏐ ≤ βI,h̃,

ζ̂h̃(φh̃, βI,h̃, βO,h̃) for βI,h̃ <
⏐⏐⏐φh̃(x, t)⏐⏐⏐ ≤ βO,h̃,

0 for
⏐⏐⏐φh̃(x, t)⏐⏐⏐ > βO,h̃,

(4.19)

with

ζ̂h̃ =
(
φh̃(x, t)− βO,h̃

)2 2φh̃(x, t) + βO,h̃ − 3βI,h̃
(βO,h̃ − βI,h̃)

3
(4.20)

is introduced, which slowly decreases the influence of the advection term towards these bound-

aries. Therein, the parameters βI,h̃ = βI h̃ and βO,h̃ = βOh̃ with βI < βO < γ divide the inner

narrow band layer into three sublayers. A viable choice for these parameters is for example

βI = 2, βO = 4, γ = 6, see [94].

Adapted discretized problem: Based on these definitions, the concept of the narrow band

level set method is now to solve the adapted, completely discretized level set equation

∑
S∈Sh̃

Ç
φn+1

h̃
−φn

h̃

∆̃t
+ θζn+1

h̃
V⃗ n+1 · ∇φn+1

h̃
+ (1− θ)ζn

h̃
V⃗ n · ∇φn

h̃
, vh̃ + δSV⃗

n+1 · ∇vh̃

å
L2(S)

= 0, ∀vh̃ ∈ V 2
cg,h̃

, S ∈ ΩINB,

(4.21)

reinitialize the solution on ΩONB, and extend the function with a constant value ±(γh̃ + ε)

outside of ΩONB, ε ∈ R+. Please note that in equation (4.21), we treat (4.19) explicitly with

respect to time by defining ζn+1
h̃

= ζ(φn
h̃
) to avoid the task of solving a non-linear equation. For

doing so, the innermost narrow band layer width βI h̃ has to be sufficiently large.

CFL conditions: When using the narrow band level set method, one has to consider two

Courant–Friedrichs–Lewy (CFL) conditions:

• Since ζ decreases the transport of the level set function outside the innermost band, we

have to guarantee that the interface Γh̃ does not leave this region. Therefore, the CFL

condition

∆t∥∥V⃗ n+1∥2∥L∞(ΩINB) < βI h̃, ∀n ∈ {0, . . . , Nt − 1} (4.22)

must hold.

• For the method to work, we need to ensure Ωn+1
INB ⊂ ΩnONB and, hence, that φh̃ is close

to a signed distance function on ΩnONB. If the velocity transporting the interface and the

time step size are too large compared to the mesh size, we may end up considering the

constant values ±(γh̃ + ε) during the solution and reinitialization process. To avoid this,

the condition

∆t∥∥V⃗ n+1∥2∥L∞(ΩINB) < h̃, ∀n ∈ {0, . . . , Nt − 1}. (4.23)

has to hold.

96 Chapter 4: Automated solution of multiphysics problems involving discontinuities

Remark 4.5. A typical parameter choice includes βI > 1 so that (4.22) is automatically fulfilled,

if (4.23) holds, making this the limiting condition. Please also note that even though the

method’s description assumes the reinitialization procedure to be applied after every time step,

it might be better to apply reinitialization and update the narrow band after every m-th time

step instead. This results in a more restrictive CFL condition given by

m∆t∥∥V⃗ n+1∥2∥L∞(ΩINB) < h̃, ∀n ∈ {0, . . . , Nt − 1}. (4.24)

4.4.2 Construction of a non-material velocity field

The solution of the level set problem for the function φi is based on knowing its evolution velocity

V⃗i. In general, there are two situations possible, first, that the velocity V⃗i is material, meaning

that particles move with the given velocity as it is, for example, the case when considering fluid

dynamics. Alternatively, the velocity can be non-material, which occur in problems involving

phase transitions. While using a material velocity for the evolution of an interface is straight-

forward, non-material velocities have to be computed by other quantities and, moreover, are

usually only locally defined. As a consequence, an extension of the computed velocity field

onto the whole domain is required. Since this thesis is motivated by considering melting and

solidification processes which can be modeled by the Stefan condition

[[λ∇u]] · n⃗i = LV⃗i · n⃗i on Γi, (4.25)

where u denotes the temperature, λ the thermal conductivity and L the latent heat, which is

the energy that is released or absorbed during the phase change, we focus on this condition for

the presentation of an approach to obtain a global velocity field based on the energy fluxes at

an interface. For ease of notation, we reduce the setting to a two-phase scenario where a level

set function φ(·, t) with zero level set Γ(t) separates a domain Ω into the subdomains Ω1(t)

(with φ(·, t) < 0) and Ω2(t) (with φ(·, t) > 0).

Our approach, published in [2, 93] and summarized here, computes the velocity V⃗ n ∈
Å
V 1
cg,h̃

ãd
for n = 0, . . . , Nt − 1 in two steps: In the first step, the Stefan condition (4.25) is evaluated

to compute the normal velocity at the interface. In a second step, this velocity is extended

to the whole narrow band, making this approach very similar to the previously presented Fast

Marching Method. However, please note that the velocity field is not calculated on the regularly

refined mesh since we do not need a piecewise quadratic velocity function.

4.4.2.1 Initialization phase

We begin with computing the projections wj , j ∈ NP, of all v ∈ V(SΓ
h̃
) onto the discrete interface

Γh̃ such that ∥v − wj∥2 = dist(v,Γh̃) holds. As there can be multiple points that satisfy the

Chapter 4: Automated solution of multiphysics problems involving discontinuities 97

Figure 4.15 Evaluation points of in the DSCE velocity computation method [2].

minimum distance requirement, we may have multiple projections wj . Now, we present two

approaches that can be used to compute the corresponding values V⃗ n
Γh̃
(v) for v ∈ V(S), S ∈ SΓ

h̃
:

(DGE) Direct gradient evaluation: We compute the discrete temperature gradient ∇un
h̃
,

which is a piecewise constant, vector-valued XFEM function, and the velocity field

at the projections wj directly using

(
V⃗ n
Γh̃
(wj)

)
k
=
(
∇(un

1,h̃
)(wj)

)
k
−
(
∇(un

2,h̃
)(wj)

)
k
,

with index k = 1, . . . , d denoting the respective component. The velocity vector at

v is then defined by averaging over all contributions
(
V⃗ n
Γh̃
(wj)

)
k
of all projections

wj that are found in the previous step.

(DSCE) Discretized Stefan condition evaluation [101]: For every projection w ∈ {wj : j ∈
NP}, we use point-value tuplesÑ

w
l
4 δh̃
− , un

1,h̃

(
w
l
4 δh̃
−

)é
and

Ñ
w
l
4 δh̃
+ , un

2,h̃

(
w
l
4 δh̃
+

)é
, l = 0, . . . , 4,

with

w
rδh̃
+,− = w ± rδh̃n⃗h̃(w)

and δh̃ = δh̃max a step-width parameter to perform a linear least-squares regression

through these five points on each separate side, cf. Figure 4.15. The slope of these

regressions is taken to approximate the gradient in normal direction at w and the

98 Chapter 4: Automated solution of multiphysics problems involving discontinuities

resulting normal velocity is given as

(V⃗ n
Γh̃

· n⃗h̃)(w) =
2

L

⎡⎣λ1
5

2un
1,h̃

(w) + un
1,h̃

(
w

1
4 δh̃
−

)
− un

1,h̃

(
w

3
4 δh̃
−

)
− 2un

1,h̃

Å
w
δh̃
−

ã
δh̃

+
λ2
5

2un
2,h̃

(w) + un
2,h̃

(
w

1
4 δh̃
+

)
− un

2,h̃

(
w

3
4 δh̃
+

)
− 2un

2,h̃

Å
w
δh̃
+

ã
δh̃

⎤⎦.
By multiplying with n⃗h̃, a velocity field V⃗ n

Γh̃
(w) = (V⃗ n

Γh̃
· n⃗h̃)(w) · n⃗h̃(w) can be

obtained from this expression. At the end, we set the velocity field at v to the

average of all contributions from the projections w ∈ {wj : j ∈ NP}.

4.4.2.2 Extension phase

To propagate the initialized velocity values into the far field, the idea of the already presented

FMM algorithm is used. Since this algorithm effectively propagates (distance) values into the

far field in the reinitialization, we can basically step through the same procedure and propagate

velocity values instead of distance values. In detail, we perform the following two steps:

(Vel. step 1) Calculate distance values for vertices v ∈ V(S), S ∈ SΓ
h̃

so that initialized

distance and velocity field values are given after this step.

(Vel. step 2) Propagate the distance values into the far field through the FMM extension

phase and additionally propagate the velocity values. If a vertex v∗ regarding d̂

in the distance propagation is processed, we set the velocity to

V⃗ n
Γh̃
(v∗) = V⃗ n

Γh̃

Ä
PW (Smin)(v

∗)
ä

where the value V⃗ n
Ä
PW (Smin)(v

∗)
ä
is again calculated through the barycentric

coordinates of the projection PW (Smin
(v∗) and already known velocity values.

Remark 4.6. Note that although (2) resembles what we do in the reinitialization process, there

is actually a minor difference that needs to be considered: there can be multiple minimizing

simplices Smin that minimize the current d̃(v∗) function for the vertex that is processed next.

While this does not matter in the reinitialization, since the distance value coincide for all these

minimizing simplices, the velocity values can differ. In this case, we need to set the velocity to

be the average of all contributions, i.e.,

V⃗ n
Γh̃
(v∗) =

1

|Smin|
∑

S∈Smin

V⃗ n
Γh̃

Ä
PW (S)(v

∗)
ä
,

where Smin captures all simplices that minimize the tentative distance function. Also note that

there is no such thing as a tentative velocity function in this procedure. The vertex that is

Chapter 4: Automated solution of multiphysics problems involving discontinuities 99

processed next is still defined by the vertex that minimizes the tentative distance function d̃

on the current active set VA. In other words, the velocity field values is information that is

propagated alongside but does not interfere with the FMM procedure itself.

Chapter 5

Numerical results and applications

The presented hierarchical eXtended finite element method and its implementation into the

framework miXFEM have been validated using several examples, see, i.a., [2, 93, 102–104]. More-

over, miXFEM has been used for the numerical simulation of several applications with industrial

background, see, for example, [105, 106]. In the following sections, we briefly summarizing some

validation results and then focus on the modeling and simulation of the applications presented

in Section 1.1 which motivate this thesis.

Due to its importance for solving complex coupled problems, we first consider the level set

toolbox, including the reinitialization and volume correction techniques, in Section 5.1. Because

of the extent of the performed numerical studies, we only give an overview of the considered

examples and present a summary of numerical tests that have been performed to validate the

implementation. Afterwards, we focus on the hierarchical eXtended finite element method. The

modeling of problems involving multiple subdomains, where several elements are multi-enriched,

is considered in Section 5.2. For this example, we also briefly take a look on the approximation

quality and convergence order of the hierarchical eXtended finite element method. Due to the

lack of analytically known solutions of multiphase Stefan problems, we validate our approach for

this kind of problem for different two-phase scenarios in Section 5.3. There, we again present

several examples and summarize some validation results before we take a quick look on the

convergence behavior of the methods by considering one example.

After considering the components of miXFEM and the validation examples, we focus on the (re-

duced) multiphysics problems that are motivated by the industrial applications already men-

tioned in Section 1.1. The laser welding process for the generation of hybrid joints is modeled

and simulated in Section 5.4 and we use this process to demonstrate miXFEM’s capabilities to

handle changes in the topology and techniques to handle new arising boundaries. Section 5.5

focuses on the thermal upsetting process where we, in addition to topological changes, have

to consider an evolving geometry in a hold-all domain. Within this section, the enhanced

modeling potential when using the hierarchical eXtended finite element method due to the

decoupling of mesh and physical domain is illustrated. Afterwards, the keyhole-based laser

101

102 Chapter 5: Numerical results

welding process is considered in much detail in Section 5.6. Therein, we again highlight the

advantages and flexibility of the hierarchical eXtended finite element method to model com-

plex multiphysics problems. Using an analytical approach to determine the keyhole geometry

a priori, the presented method and miXFEM are used to model and simulate the process. The

numerical results are then compared to experimental data generated at the Bremer Institut für

angewandte Strahltechnik. Finally, we briefly consider a multiphase flow problem to illustrate

the generality of the developed method and the framework miXFEM.

5.1 The level set method

When using eXtended discretization methods, interfaces and physical domain boundaries are

usually represented using the level set method, see Section 2.1. This is especially true when

the evolution of boundaries or interfaces is part of the solution, which makes the level set

toolbox crucial for tackling multiphysics problems. Therefore, we first address the validation of

the algorithms implemented into the level set toolbox. There are various aspects implemented

within the toolbox which require intensive testing:

(Tests 1) the actual level set solver,

(Tests 2) the SUPG stabilization,

(Tests 3) the reinitialization method,

(Tests 4) all volume correction approaches, and

(Tests 5) the narrow band approach and the corresponding adapted level set problem.

Moreover, we have to perform thorough parameter studies to quantify the influence of

(Study 1) the SUPG stabilization,

(Study 2) the narrow band regions (respectively the values of βI , βO, and γ),

(Study 3) the reinitialization method and the reinitialization frequency,

(Study 4) the different volume correction approaches, and

(Study 5) all possible combinations of the methods

on the solution process and the solution’s accuracy.

However, since the level set method is not directly a part of the hierarchical eXtended finite

element method on which this thesis focuses, we omit a detailed presentation of our parameter

studies but refer to our corresponding publications [2, 93]. Instead, we only mention the consid-

ered examples in Section 5.1.1, comment on the simulation setup and computational approach

in Section 5.1.2, and briefly summarize the obtained results in Section 5.1.3.

Chapter 5: Numerical results 103

Figure 5.1 2D example swirling flow vortex: Zero level set Γh(t) of the reference
solution φh(x, t) for t = 0, t = 0.5, t = 1, t = 1.5 and t = 2.

5.1.1 Examples

For the validation of the methods described in Section 4.4.1 and their implementation, detailed

studies have been performed for, among other, the following two examples in both, 2D and

3D. The characteristic of all mentioned examples is that the zero level set Γ(t0) of φ(x, c, t0)

is a sphere with center of gravity in c that is deformed for t ∈ (t0,
1
2 tf] while this deformation

is reversed for t ∈ (12 tf , tf] so that φ(x, t0) = φ(x, tf). Hence, we can compare the functions

φ(x, t0) and φ(x, tf) and compute the approximation errors introduced by the discretization

and the maintaining methods implemented in the toolbox.

5.1.1.1 2D example: Swirling flow vortex

On Ω = (0, 1), we introduce the divergence-free velocity field

V⃗ (x) = V⃗ (x, y) :=

Ö
− sin(πx)2 sin(2πy) cos(πttf)

sin(2πx)2 sin(πy)2 cos(πttf)

è
(5.1)

and consider the level set problem for the time interval [t0, tf] = [0, 2], where the initial function

is given by

φ(x, c, t0) := ∥x− c∥2 − r0, (5.2)

with c = (0.5, 0.75)T and r0 = 0.15 [95]. A visualization of the zero level set Γh(t) for some

points in time is given in Figure 5.1.

5.1.1.2 2D example: Deforming droplet

This example describes the movement and deformation of a circle and is adapted from [29]. For

t ∈ [0, 20] let Ω = (0, 1)2 be the considered domain and

φ(x, c, t0) := ∥x− c∥2 − r0, (5.3)

104 Chapter 5: Numerical results

Figure 5.2 2D example rising deforming droplet: Zero level set Γh(t) of the reference
solution φh(x, t) for t = 0, t = 5, t = 10, t = 15 and t = 20.

with c = (0.5, 0.25)T and r0 = 0.15, be the initial level set function with zero level set Γ(t0).

We consider the evolution of φ(x, t) for the velocity field given by

V⃗ (x, t) = V⃗ (x, y, t) =

⎧⎪⎪⎨⎪⎪⎩
a(x) · (y − 0.5,−(x− 0.5)), for t ≤ 1

2 tf ,

−a(x) · (y − 0.5,−(x− 0.5)), for t > 1
2 tf ,

(5.4)

with

a(x) =

⎧⎪⎪⎨⎪⎪⎩
4∥(x− (0.5, 0.5)T)∥2 (0.5− ∥x− (0.5, 0.5)T ∥2), for ∥x− (0.5, 0.5)T ∥2 ≤ 0.5,

0, otherwise
.

Figure 5.2 visualizes Γh(t) for different points in time.

5.1.1.3 3D example: Swirling flow vortex

The swirling flow vortex example described in Section 5.1.1.1 can be extended to a 3D scenario

[95]. Therefore, we choose Ω = (0, 1)3 and define

φ(x, c, t0) := ∥x− c∥2 − r0, (5.5)

with c = (0.35, 0.35, 0.35)T and r0 = 0.15 whose zero level set Γ(t0) is a a sphere centered at

c(x) with radius r0. The considered velocity field is given by

V⃗ (x, t) = V⃗ (x, y, z, t) =

á
2 sin2(πx) sin(2πy) sin(2πz) cos(πt/tf)

− sin(2πx) sin2(πy) sin(2πz) cos(πt/tf)

− sin(2πx) sin(2πy) sin2(πz) cos(πt/tf)

ë
, (5.6)

where the considered time interval is [t0, tf] = [0, 2]. The zero level set Γh(t) is visualized in

Figure 5.3 for some points in time.

Chapter 5: Numerical results 105

Figure 5.3 3D example deformation flow: Zero level set Γh(t) of the reference solution
φh(x, t) for t = 0, t = 0.25, t = 0.5, and t = 1.0,.

Figure 5.4 3D example rising deforming droplet: Zero level set Γh(t) of the reference
solution φh(x, t) for t = 0, t = 5, t = 10, t = 15 and t = 20.

5.1.1.4 3D example: Deforming droplet

The last scenario considered in the studies extends the example considered in Section 5.1.1.2

to three dimensions [29]. For Ω = (0, 1)3 and t ∈ [0, 20], we consider the evolution of

φ(x, c, t0) := ∥x− c∥2 − r0, (5.7)

with c = (0.5, 0.25, 0.5)T and r0 = 0.2 for the velocity field given by

V⃗ (x, t) = V⃗ (x, y, z, t) =

⎧⎪⎪⎨⎪⎪⎩
a(x) · (y − 0.5,−(x− 0.5)), for t ≤ 1

2 tf ,

−a(x) · (y − 0.5,−(x− 0.5)), for t > 1
2 tf ,

(5.8)

with

a(x) =

⎧⎪⎪⎨⎪⎪⎩
4∥(x− 0.5(1, 1, 1)T)∥2(0.5− ∥x− 0.5(1, 1, 1)T ∥2), for ∥x− 0.5(1, 1, 1)T ∥2 ≤ 0.5,

0, otherwise
.

The movement and deformation of the droplet given by the zero level set Γ(t) is shown for

different times in Figure 5.4.

106 Chapter 5: Numerical results

Figure 5.5 Time stepping synchronization: Intermediate time steps for the solution
of the level set problem are synchronized with the time step size for the thermal

problem.

5.1.2 Simulation setup and computational approach

All examples are considered on a uniform triangulation Sh with
⋃
S∈Sh

S = Ω̄. The used

approximation spaces are V 2
cg,h for the level set function and

Ä
V 2
cg,h

äd
, d = 2, 3, for the discrete

velocity fields V⃗h. The time discretization scheme used for the detailed parameter studies is

the implicit Euler method, but the Crank-Nicolson scheme, the explicit Euler method and

some total variation diminishing Runge-Kutta schemes have also been tested. The number of

elements Nel in our studies varies from Nel = 2×10d to Nel = 2×80d, d = 2, 3. The narrow band

parameters are either βI = 2, βO = 4, γ = 6, or βI = 3, βO = 6, γ = 9 and the time step sizes

are chosen as 2−k with k ∈ {4, 5, 6, 7, 8, 9}. However, due to the CFL conditions arising by using

the narrow band approach, we may have to adapt the time step size or use intermediate time

steps. Hence, we define the time step size ∆t as major time step size and introduce an adjusted

time step size ∆tφ, if necessary, to take into account the CFL condition(s) with time step size

∆tCFL. Consequently, we may have to introduce potentially non-equidistant intermediate time

steps tn,i in order to reach tn+1. The described procedure is illustrated in Figure 5.5 and the

full computational approach is shown in Algorithm 4.

5.1.3 Results

For validating the methods and their implementation as well as analyzing the quality of the

computed solutions, the errors

e∞vol := max
n=0,...,Nt

V (Ωni,h)− V (Ωni)

V (Ωni)
, i = 1 or i = 2,

e
tf
dist := max

x∈ΓNt
h

min
x̃∈ΓNt

∥x− x̃∥2,

(5.9)

(5.10)

Chapter 5: Numerical results 107

Algorithm 4 Level set solver.

Input: Ω, Γin, Sh, φ(t0), V⃗ (t), gin, t0, tf , ∆t, ∆tmax, ∆tmin, βO, βI , γ.
Output: φn, Γnh for n > 0.

1: procedure Level set solver.
2: Initialization (1): tn = t0, φ

n
h = φ(t0), V⃗

n = V⃗ (t0).
3: Initialization (2): Define V 2

cg,h,gD
(t0)

4: if Narrow band used then
5: Initialization (3): Initialize ΩINB and ΩONB for φ0

h.
6: end if
7: for n = 0, . . . , Nt − 1 do
8: Assign tφ = t0 + n∆t (current simulation time) and φ

tφ
h = φnh.

9: while (dotφ < (n+ 1∆t))
10: Compute ∆tφ := min{max{∆tCFL,∆tmin}, (n+ 1)∆t− tφ,∆tmax}.
11: Solve level set problem to get φ

tφ+∆tφ
h

12: if Reinitialization required then
13: Perform initialization phase, cf. Section 4.4.1.3.
14: if Volume correction desired then
15: Perform volume correction, cf. Section 4.4.1.4.
16: end if
17: Perform extension phase, cf. Section 4.4.1.3, to get new φ

tφ+∆tφ
h .

18: if Narrow band used then
19: Update ΩINB and ΩONB.
20: end if
21: end if
22: Set tφ = tφ +∆tφ.
23: end while
24: Set φn+1

h = φ
tφ
h .

25: end for
26: end procedure

are considered. If we do not use the narrow band∗, we also analyze the convergence behavior

for the error

enL2 := ∥φn − φnh∥L2(Ω), n = 0, . . . , Nt. (5.11)

To put it in a nutshell, the results of the validation tests and parameter studies when considering

the introduced examples are as follows:

(Result 1) The level set solver without using any maintaining method converges with the

optimal rates in (almost) every example†.

(Result 2) Using SUPG stabilization worsens the numerical results somewhat, if the velocity

is rather small. For high velocities, where the conventional finite element method

∗Please note that we do not use errors such as ∥φn−φn
h∥L2(Ω) when applying the narrow band method, since

the reinitialization reestablishes the signed distance property only in a proximity of the interface. Consequently,
such errors do not necessarily converge.

†However, the absolute errors are rather large compared to simulation where the maintaining methods have
been used.

108 Chapter 5: Numerical results

becomes unstable, using the stabilization method allows for retaining the stability

so that reasonable solutions can be computed.

(Result 3) The reinitialization should always be performed with a volume correction step after

the initialization phase.

(Result 4) The global and local volume correction methods both significantly reduce the vol-

ume defect. However, the (more efficient) global approach has a rather large impact

on the solution since, by design, it tries to preserve the shape of the zero level set. In

contrast to this, the local approach has only a very small influence on the solution

process and the convergence order.

(Result 5) Even with volume correction, the reinitialization frequency has an impact on the

accuracy of the solution. Depending on the CFL condition, and hence the mesh

size h, it is advantageous to choose the maximum ∆tCFL possible to reduce the

total number of reinitializations.

(Result 6) The choice of the narrow band parameters βI , βO, and γ has almost no influence

on the solution itself but of course on the computational time.

5.2 Multiphase steady-state diffusion equation

To demonstrate the capability of the miXFEM framework to consider problems involving multiple

discontinuities and multi-junctions, we solve the following diffusion problem: Let Ω = (0, 1)2

with ∂Ω = ΓD ∪ ΓN, where ΓD = [0, 1] × {0} and ΓN = ∂Ω \ ΓD, be a domain that consists of

the subdomains

Ω1 :=
¶
x ∈ Ω : y < 1

4

©
,

Ω2 :=
¶
x ∈ Ω : x < 1

4 ∧ y > 1
4

©
,

Ω3 :=
¶
x ∈ Ω : y > 1

4 ∧ y < 2
3x+ 1

12

©
,

Ω4 :=
¶
x ∈ Ω : x > 1

4 ∧ y > 2
3x+ 1

12 ∧ y2 > 1
25 − (x− 0.66)2 + 0.662

©
,

Ω5 :=
¶
x ∈ Ω : y > 2

3x+ 1
12 ∧ y2 < 1

25 − (x− 0.66)2 + 0.662
©
,

(5.12)

that are separated by the interfaces

Γ1,2 :=
¶
x ∈ Ω : x ≤ 1

4 ∧ y = 1
4

©
,

Γ1,3 :=
¶
x ∈ Ω : x > 1

4 ∧ y = 1
4

©
,

Γ2,4 :=
¶
x ∈ Ω : x = 1

4 ∧ y > 1
4

©
,

Γ3,4 :=
¶
x ∈ Ω : y > 1

4 ∧ y = 2
3x+ 1

12 ∧ y2 > 1
25 − (x− 0.66)2 + 0.662

©
,

Γ3,5 :=
¶
x ∈ Ω : y > 1

4 ∧ y = 2
3x+ 1

12 ∧ y2 < 1
25 − (x− 0.66)2 + 0.662

©
,

Γ4,5 :=
¶
x ∈ Ω : y > 2

3x+ 1
12 ∧ y2 = 1

25 − (x− 0.66)2 + 0.662
©
,

(5.13)

Chapter 5: Numerical results 109

Ω1

Ω2

Ω

Γ1,2

ΓN

ΓD

ΓN

Γ1,3

Γ2,4

Γ1,2

ΓN

Ω3

Ω4

Ω5

Γ1,3

Γ3,5

Γ3,4

Γ4,5

Figure 5.6 Problem setting for the multiphase example: Hold-all domain Ω is de-
composed into subdomains Ωl, l = 1, . . . , 5 by the (active parts) of the zero level sets

Γi of hierarchically ordered level set functions.

see Figure 5.6.

We introduce the sets F := {(2, 4), (3, 4), (3, 5), (4, 5)} and D := {(1, 2), (1, 3)} containing index

pairs of interfaces at which we impose different conditions and consider the steady-state diffusion

problem given by

−∇ · (κ∇u) = f in
⋃5

i=1
Ωi,

u = gD on ΓD,

−κ∇u · n⃗ = gN on ΓN,

Jκ∇uK · n⃗i,l = gi,l on Γi,l, (i, l) ∈ F ,

JuK = qi,l on Γi,l, (i, l) ∈ F ,

u|Ωi = gi, on Γi,l, (i, l) ∈ D,

u|Ωl
= gl, on Γi,l, (i, l) ∈ D,

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

where the data for gD, gN, gi,l, qi,l, gi, and gl is chosen so that the function

u(x) = u(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 + 2y2 for x ∈ Ω1

(1−cos(4π(x−0.5)))(1−cos(4π(y−0.5)))
4 for x ∈ Ω2

exp
(»

(x+ 0.1) + y2
)

for x ∈ Ω3

1−cos(4π(y− 3
4
))

9 for x ∈ Ω4

1− sin
(
4π(x− 0.5)

) (
1− exp(y − 0.5)

)
for x ∈ Ω5

(5.21)

110 Chapter 5: Numerical results

is a solution to the problem given by equations (5.14) to (5.20) for κ|Ωi = κi and κ1 = 5,

κ2 = 10, κ3 = 15, κ4 = 20, and κ5 = 30.

5.2.1 Modeling and implementation in miXFEM

We model the given problem using the hierarchical level set method with Ndom = 5. Therefore,

we define hierarchically ordered level set functions‡

φ1(x) := y − 1

4
,

φ2(x) := x− 1

4
,

φ3(x) := y − 2

3
x+

1

12
,

φ4(x) =
1

5
−
»
(x− 0.66)2 + (y − 0.66)2,

(5.22)

where the (active parts of the hierarchical) zero level sets

Γ1 := Γ1,2 ∪ Γ1,3,

Γ2 := Γ2,4,

Γ3 := Γ3,4 ∪ Γ3,5, and

Γ4 := Γ4,5,

(5.23)

decompose Ω into the five subdomains Ωl, l = 1, 2, 3, 4, 5. Now, we approximate the solution of

this problem numerically with the hierarchical eXtended finite element method.

Let Sh be a triangulation covering Ωh with Ωh = Ω since Ω is polygonally bounded which

also means that we have ΓD,h = ΓD and ΓN,h = ΓN. Using Nitsche’s method as described

in Section 3.3.2, the discrete problem reads: Find uh ∈ V m
h := {vh ∈ C0(Ωi) : vh|S∩Ωi ∈

‡The number of the level set function corresponds to the hierarchy level where the lowest number denotes
the highest hierarchy level

Chapter 5: Numerical results 111

Pm(S ∩ Ωi), ∀S ∈ Sh, i = 1, . . . , Ndom} with uh = gD on ΓD such that

∫
⋃5

i=1 Ωi

κ∇uh · ∇vh dx

−
∑

(i,l)∈F

(∫
Γi∩Γi,l

Ç
�vh�{κ∇uh · �ni}+ �uh�{κ∇vh · �ni} −

λi,l

h
�uh��vh�

å
dx

)

−
∑

(i,l)∈D

(∫
Γi∩Γi,l

Ç
κ|Ωi∇uh|Ωi · �nivh|Ωi + κ|Ωi∇vh|Ωi · �niuh|Ωi −

λi,l

h
uh|Ωivh|Ωi

å
dx

−
∫
Γi∩Γi,l

Ç
κ|Ωl

∇uh|Ωl
· �nivh|Ωl

+ κ|Ωl
∇vh|Ωl

· �niuh|Ωl
+

λi,l

h
uh|Ωl

vh|Ωl

å
dx

)

=

∫
⋃5

i=1 Ωi

fhvh dx−
∫
ΓN

gNvh dx

+
∑

(i,l)∈F

(∫
Γi∩Γi,l

Ç
〈vh〉gi,l dx− qi,l{κ∇vh · �ni}+

λi,l

h
qi,l�vh�

å
dx

)

+
∑

(i,l)∈D

(∫
Γi∩Γi,l

Ç
κ|Ωi∇vh|Ωi · �nigi +

λi,l

h
givh|Ωi

å
dx

−
∫
Γi∩Γi,l

Ç
κ|Ωl

∇vh|Ωl
· �nigl −

λi,l

h
glvh|Ωl

å
dx

)

(5.24)

holds for all vh ∈ V m
h . The corresponding part of the discretized variational formulation imple-

mented in UFL when using miXFEM is shown in Figure 5.7.

In regards to the decomposition of zero level set Γi into interfaces Γi,l, please recall that a

sophisticated domain id mapping is only necessary in situations where we want to impose a

different type of interface conditions on different interface parts Γi,l of the same zero level set

Γi. Since that is not the case in the given setting, we can simply define the mapping by§

1 [...]

2 std::vector<uint > domain_id_map(4);

3 domain_id_map[0] = 0;

4 domain_id_map[1] = 1;

5 domain_id_map[2] = 2;

6 domain_id_map[3] = 3;

7 std::vector<std::vector<std::pair<uint , bool> > >

domain_id_restrictions(4, std::vector<std::pair<uint , bool> >(0));

8 [...]

To take into account different fluxes and jump conditions or Dirichlet values at the same zero

level set Γi, we introduce piecewise defined functions. Alternatively, we could also introduce

additional measures dc(i) and use different function for imposing the required conditions.

§Please note that the indexing in C++ starts with 0 while our notation begins with 1.

112 Chapter 5: Numerical results

1 [...]

2 a = k*dot(grad(v), grad(u))*dx \

3 - k(’-’) * dot(grad(u(’-’)), n(phi_0(’-’))) * v(’-’) * dc(0) \

4 + k(’+’) * dot(grad(u(’+’)), n(phi_0(’+’))) * v(’+’) * dc(0) \

5 - k(’-’) * dot(grad(v(’-’)), n(phi_0(’-’))) * u(’-’) * dc(0) \

6 + k(’+’) * dot(grad(v(’+’)), n(phi_0(’+’))) * u(’+’) * dc(0) \

7 - jump(u) * wavg(k*inner(nabla_grad(v),n(phi_1))) * dc(1) \

8 - jump(u) * wavg(k*inner(nabla_grad(v),n(phi_2))) * dc(2) \

9 - jump(u) * wavg(k*inner(nabla_grad(v),n(phi_3))) * dc(3) \

10 - jump(v) * wavg(k*inner(nabla_grad(u),n(phi_1))) * dc(1) \

11 - jump(v) * wavg(k*inner(nabla_grad(u),n(phi_2))) * dc(2) \

12 - jump(v) * wavg(k*inner(nabla_grad(u),n(phi_3))) * dc(3) \

13 + nitsche(’+’) * u(’-’) * v(’-’) * dc(0) \

14 + nitsche(’+’) * u(’+’) * v(’+’) * dc(0) \

15 + nitsche(’+’) * jump(u) * jump(v) * dc(1) \

16 + nitsche(’+’) * jump(u) * jump(v) * dc(2) \

17 + nitsche(’+’) * jump(u) * jump(v) * dc(3)

18 L = - k(’-’) * dot(grad(v(’-’)), n(phi_0(’-’))) * u_exact(’-’) * dc(0) \

19 + k(’+’) * dot(grad(v(’+’)), n(phi_0(’+’))) * u_exact(’+’) * dc(0) \

20 - jump(u_exact) * wavg(k*inner(nabla_grad(v),n(phi_1))) * dc(1) \

21 - jump(u_exact) * wavg(k*inner(nabla_grad(v),n(phi_2))) * dc(2) \

22 - jump(u_exact) * wavg(k*inner(nabla_grad(v),n(phi_3))) * dc(3) \

23 + jump(k*dot(nabla_grad(u_exact),n(phi_1))) * cavg(v) * dc(1) \

24 + jump(k*dot(nabla_grad(u_exact),n(phi_2))) * cavg(v) * dc(2) \

25 + jump(k*dot(nabla_grad(u_exact),n(phi_3))) * cavg(v) * dc(3) \

26 + nitsche(’+’) * u_exact(’-’) * v(’-’) * dc(0) \

27 + nitsche(’+’) * u_exact(’+’) * v(’+’) * dc(0) \

28 + nitsche(’+’) * jump(u_exact) * jump(v) * dc(1) \

29 + nitsche(’+’) * jump(u_exact) * jump(v) * dc(2) \

30 + nitsche(’+’) * jump(u_exact) * jump(v) * dc(3) \

31 - nabla_div(k*nabla_grad(u_exact)) * v * dx \

32 + k * dot(N,nabla_grad(u_exact)) * v * ds(0)

33 [...]

34

Figure 5.7 Part of the UFL implementation of the discretized variational formulation
of the steady-state diffusion problem in miXFEM.

5.2.2 Approximation quality and convergence order

Using the approximation space Vh = {vh ∈ C0(Ωi) : vh|S∩Ωi ∈ P1(S ∩ Ωi), ∀S ∈ Sh, i =

1, . . . , 5}, we run the multiphase example on a uniform triangulation Sh with Nel = {2× 52, 2×
92, 2 × 172, 2 × 332, 2 × 652} elements. As expected, the convergence rates of the L2 and H1

approximation errors for the respective projection, as well as the solution, are optimal and do

not depend on the interfaces’ positions, see Tables 5.1 and 5.2. The solution of the problem is

visualized for Nel = 2× 172 in Figure 5.8.

5.3 Two-phase Stefan problem

Motivated by the mentioned engineering applications, we now consider the two-phase Stefan

problem as an example process for validating the framework miXFEM for a problem with time-

dependent discontinuity. Therefore, we use the Stefan condition to couple the heat equation

Chapter 5: Numerical results 113

Nel infvh∈V 1
cg
∥u− vh∥L2(Ω) eoc infvh∈V 1

cg
∥u− vh∥H1(Ω) eoc

2× 52 0.051359 - 1.774387 -
2× 92 0.015551 2.0326 0.998924 0.9780
2× 172 0.003824 2.2057 0.508045 1.0632
2× 332 0.000969 2.0697 0.256290 1.0316
2× 652 0.000247 2.0164 0.127814 1.0263

Table 5.1 Projection errors and estimated order of convergence for the specified example using the
approximation space Vh.

Nel ∥u− uh∥L2(Ω) eoc ∥u− uh∥H1(Ω) eoc

2× 52 0.238422 - 3.743190 -
2× 92 0.083712 1.7807 1.612254 1.4342
2× 172 0.018471 2.3761 0.683200 1.3516
2× 332 0.003809 2.3803 0.287689 1.3044
2× 652 0.000655 2.5970 0.130304 1.1685

Table 5.2 Approximation errors and estimated order of convergence for the specified example using
the approximation space Vh.

Figure 5.8 Visualization of the solution uh for Nel = 2× 172: Γ1 is shown in white,
Γ2 is shown in yellow, Γ3 is shown in green, and Γ4 is shown in red.

with the conventional level set problem. This problem has been considered in more detail for

several examples with known analytical solution in our publications [2, 93].

5.3.1 Model

Let Ω ⊂ Rd, d = 2, 3, with ∂Ω polygonal, be a fixed domain consisting for t ∈ [t0, tf] of the

disjoint regions Ω1(t) (the solid domain) and Ω2(t) (the liquid domain) that are separated by

114 Chapter 5: Numerical results

(a) Setting with open interface. (b) Setting with closed interface.

Figure 5.9 Sketches of different settings for the two-phase Stefan problem.

an internal boundary Γ1,2(t) (the solid-liquid interface). We assume that Γ1,2(t) is sharp and

sufficiently smooth for all t ∈ [t0, tf] and introduce the unit normal vector n⃗1,2(t,x) = n⃗1 = −n⃗2
to Γ1,2(t) pointing from Ω1 into Ω2. Sketches of different settings are visualized in Figure 5.9.

Heat equation

The temperature field is given by u : Ω× [t0, tf] → R with u|Ωi = ui, i ∈ {1, 2} and its evolution

is described by

ρc
∂u

∂t
−∇ · (λ∇u) = f, in Ω1(t) ∪ Ω2(t), t ∈ (t0, tf), (5.25)

in which we assume that the density ρ is constant in Ω while the specific heat capacities ci and

the thermal conductivities λi are assumed as constant in each subdomain Ωi(t).

For the boundary ∂Ω = ΓD∪ΓN∪ΓR with ΓD∩ΓN∩ΓR = ∅, the following conditions are given

u = gD, on ΓD × (t0, tf],

−λ∇u · n⃗ = gN, on ΓN × (t0, tf],

−λ∇u · n⃗ = gR(u), on ΓR × (t0, tf],

(5.26)

(5.27)

(5.28)

where n⃗ denotes the outer unit normal to ∂Ω. Here, the function gR(u) describes the thermal

transfer to the environment which we model as combination of Newton’s law of cooling and the

Stefan-Boltzmann law

gR(u) = gc(u) + gr(u) = α(ua − u) + ϵσ(u4a − u4) (5.29)

with α being the heat transfer coefficient, ua denoting the ambient temperature, σ is the Stefan-

Boltzmann constant and ϵ is the emissivity of the material. As before, the coefficients α and ϵ

are assumed to be constant in each subdomain Ωi(t).

At the solid-liquid phase boundary Γ1,2(t), we expect the so-called isothermal interface condition

u(·, t) = u1,2 on Γ1,2(t) (5.30)

Chapter 5: Numerical results 115

to hold for all times t ∈ [t0, tf] with u1,2 being the melting temperature. As a result, we have

u(·, t) < u1,2 in Ω1(t), and u(·, t) > u1,2 in Ω2(t). (5.31)

Initially, the temperature distribution on Ω1(t0) ∪ Ω2(t0), which has to fulfill the conditions

(5.30) and (5.31), is given by

u(·, t0) = u0. (5.32)

Representation the solid-liquid interface

Since there are only two regions and one interface present, only one hierarchy level is needed

within the method. Thus, the hierarchical level set method equates to the conventional ap-

proach. Given the initial zero level set Γ1,2(t0), we introduce a corresponding signed distance

function φ1(x, t0) whose evolution in time can be described by the problem

∂φ1

∂t
+ V⃗1,2 · ∇φ1 = 0 in Ω× [t0, tf],

φ1(·, t0) = φ1,0 in Ω,

(5.33)

where V⃗1,2 = V⃗1,2(x, t) is given by the Stefan condition

(λ1∇u1 − λ2∇u2) · n⃗1 = ρLV⃗1,2 · n⃗1 on Γ1,2, (5.34)

coupling the heat equation with the level set problem. In equation (5.34), L corresponds to the

latent heat that is released or absorbed during the phase change.

Remark 5.1. Alternatively, one could also define a function

φ̌1(x, t0) := u(x, t0)− u1,2. (5.35)

which also has the zero level set Γ1,2(t0). Unfortunately, φ̌1 may not have the regularity that is

required for the transport equation (5.33). Hence, we again have to introduce a signed distance

function φ1. However, this idea can be enhanced to detect topological changes, see Section 5.4.1.

Coupled problem

Altogether, the coupled two-phase Stefan problem in level set formulation is given by: For

t ∈ [t0, tf] find the solid-liquid interface Γ1,2 given as zero level of φ1 ∈ C1(Ω×(t0, tf))∩C0(Ω̄×
[t0, tf]) and the temperature distribution u which is sufficiently smooth, i.e., u ∈ C0(Ω̄× [t0, tf]),

116 Chapter 5: Numerical results

u(·, t)|Ωi
∈ C2(Ωi(t)) and ∂tu(·, t) ∈ C0(Ω1(t) ∪ Ω2(t)) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρc
∂u

∂t
−∇ · (λ∇u) = f in

⋃2

i=1
Ωi(t), t ∈ (t0, tf),

u = gD on ΓD × (t0, tf],

−λ∇u · n⃗ = gN on ΓN × (t0, tf],

−λ∇u · n⃗ = gR(u) on ΓR × (t0, tf],

u(·, t) = u1,2 on Γ1,2(t),

u(·, t0) = u0 in
⋃2

i=1
Ωi(t0),

(5.36a)

(5.36b)

(5.36c)

(5.36d)

(5.36e)

(5.36f)

(λ1∇u1 − λ2∇u2) · n⃗1 = ρLV⃗1,2 · n⃗1 on Γ1,2(t), (5.37)

⎧⎪⎨⎪⎩
∂φ1

∂t
+ V⃗1,2 · ∇φ1 = 0 in Ω× [t0, tf],

φ1(·, t0) = φ1,0 in Ω,

(5.38a)

(5.38b)

holds for given sufficiently smooth data.

5.3.2 Discretization and computational approach

We decouple the problem given by equation (5.36) to (5.38) into the subproblems (5.36) and

(5.38) and discretize them individually. Therefore, we first consider the geometry problem given

by (5.38) and use the old temperature data for computing the velocity V⃗1,2(t) · n⃗1,2 on Γ1,2(t)

by evaluating the coupling condition (5.37) with one of the methods described in Section 4.4.2.

As (5.37) only provides the normal component of V⃗1,2(t) on Γ1,2(t), the computed velocity is

extended to obtain a full velocity field, see Section 4.4.2.2, which is required for the solution of

the transport problem.

The heat equation is discretized with the (hierarchical) eXtended finite element method as

described in Section 3.3. Therefore, we first scale equation (5.36) by 1
ρc and then use Rothe’s

method, see Section 3.3.3. The resulting quasi-stationary problem, which is very similar to

Example 3.4, is then discretized in space whereas the interface condition is imposed using

Nitsche’s method. The level set problem is discretized as described in Section 4.4.1 and the

velocity field V⃗1,2 is computed using the approach presented in Section 4.4.2.

For computing a numerical solution, we solve the subproblems in succession. Therefore, we begin

with computing the velocity field by evaluating the Stefan condition for the initial temperature

u(·, t0) and then solving the level set problem. While we use the same time discretization scheme

for the heat equation and the level set problem, we still may need to introduce intermediate

time steps for solving the level set problem due to the CFL conditions arising due to the narrow

band as explained in Section 4.4.1.5. To take this into account, we use a very similar strategy

Chapter 5: Numerical results 117

Figure 5.10 Time stepping synchronization: Intermediate time steps for the solution
of the level set problem are synchronized with the time step size for the thermal

problem.

Algorithm 5 Computational approach for solving the two-phase Stefan problem in level set
formulation.

Input: Ω, ΓD, ΓN, ΓR, Sh, φ(t0), u(t0), u1,2, f, κ, λ, ρ, c, L, gD, gN, gR, t0, tf , ∆t, βO, βI , γ.
Output: unh, Γ

n
h, V⃗

n
h for n > 0.

1: procedure Computational approach for the two-phase Stefan problem.
2: Initialization (1): tn = t0, u

n
h = u(t0), φ

n
h = φ(t0), Γ

n
h = Γ(t0).

3: Initialization (2): Define V 1
h,uD

(t0) and initialize ΩINB and ΩONB for φ0
h.

4: for n = 0, . . . , Nt − 1 do
5: Compute V⃗ n

1,2 by evaluating (5.34) with an approach presented in Section 4.4.2.

6: Assign tφ = t0 + n∆t (current simulation time) and φ
tφ
h = φnh.

7: Compute new level set function φn+1
h with Algorithm 4.

8: Compute the new discrete interface Γn+1
h from φn+1

h .
9: Define V 1

h,gD
(tn+1).

10: Compute un+1
h by solving (5.60).

11: end for
12: end procedure

to Section 5.1.2 and define the time step size ∆t, used for discretizing the heat equation in

time, as major time step size and the values tn = t0 + n∆t with n ∈ {0, . . . , Nt} as so-called

synchronization points. Based on this, we adjust the time step size to ∆tCFL < ∆tφ used for

solving the level set problem if necessary, so that the CFL condition(s) are respected. This

means we may have to introduce potentially non-equidistant intermediate time steps tn,i in

order to reach the (next) synchronization point(s). The described procedure is illustrated in

Fig. 5.10. The computational approach to solve the two-phase Stefan problem in level set

formulation is presented in Algorithm 5 and parts of the corresponding UFL file containing the

discretized variational formulation are given in Figure 5.11.

Remark 5.2 (Impact of the CFL conditions on the solution and the consequences when con-

sidering complex applications). Please note that a lot of intermediate time steps of size ∆tCFL

are necessary for solving the level set problem, if we define a rather large major time step size

∆t while using the narrow band approach. This can have a huge impact on the solution’s

accuracy (and hence the convergence behavior of approximation errors) as we neither update

the temperature nor the velocity field for these intermediate steps. For considering applications

118 Chapter 5: Numerical results

1 [...]

2 a = v * u_new * dx + dt * dot(k * grad(v), grad(u_new)) * dx \

3 + dt(’+’) *nitsche(’+’) * u_new(’+’) * v(’+’) * dc(0) \

4 + dt(’+’) *nitsche(’+’) * u_new(’-’) * v(’-’) * dc(0) \

5 - dt(’+’) * k(’-’) * dot(grad(u_new(’-’)), n(phi0(’-’))) * v(’-’) * dc(0) \

6 + dt(’+’) * k(’+’) * dot(grad(u_new(’+’)), n(phi0(’+’))) * v(’+’) * dc(0) \

7 - dt(’+’) * k(’-’) * dot(grad(v(’-’)), n(phi0(’-’))) * u_new(’-’) * dc(0) \

8 + dt(’+’) * k(’+’) * dot(grad(v(’+’)), n(phi0(’+’))) * u_new(’+’) * dc(0)

9
10 L = v * u_old * dx - dt(’+’) * gN * v* ds(0) \

11 + dt(’+’) *nitsche(’+’) * u_m(’+’) * v(’+’) * dc(0) \

12 + dt(’+’) *nitsche(’+’) * u_m(’+’) * v(’-’) * dc(0) \

13 - dt(’+’) * k(’-’) * dot(grad(v(’-’)), n(phi0(’-’))) * u_m(’+’) * dc(0) \

14 + dt(’+’) * k(’+’) * dot(grad(v(’+’)), n(phi0(’+’))) * u_m(’+’) * dc(0)

15 [...]

Figure 5.11 Part of the UFL implementation of the discretized variational formulation
of the two-phase Stefan problem in miXFEM.

as we will do in Sections 5.4 to 5.6, we therefore do not specify a fixed time step size Δt but an

interval [Δtmin,Δtmax] and choose Δt ∈ [Δtmin,Δtmax] so that the CFl conditions are satisfied.

Remark 5.3 (Fix point iteration scheme). Instead of solving the subproblems in succession, we

could also use a fixed point scheme to improve accuracy. Such a scheme is based on iterating

the solution of the heat equation and the solution of the level set problem against each other.

An implementation approach for such a procedure is presented in [29, Sec. 9].

5.3.3 Validation of the implementation and examples

Similar to the previous section, we validate our method and its implementation using several

examples. As the computational approach for solving the coupled two-phase Stefan problem

involves different methods, such as the level set toolbox and the schemes to derive a velocity

field by evaluating the Stefan condition, there are many parameters that can have an influence

on the accuracy of the solution and convergence behavior of the approximation. As a results,

several aspects have to be considered:

(SP 1) Since we already validated the level set toolbox, cf. Section 5.1, and the capabilities of

miXFEM to solve problems involving stationary discontinuities, see Section 5.2, we now

need to validate the XFEM solver for time-dependent problems. Therefore, we first

prescribe the interface evolution analytically and reduce the two-phase Stefan problem

to an (time-dependent) heat equation with moving interface.

(SP 2) In regards to the computation of the velocity field based on evaluating the Stefan

condition, both approaches (DGE and DSCE) presented in Section 4.4.2 need to be

tested. Additionally, we have to study the impact of the parameter choice on the

solution accuracy and convergence behavior, especially when using the DSCE scheme.

Chapter 5: Numerical results 119

(SP 3) Finally, we investigate the convergence behavior by performing studies for varying time

step size ∆t and element size h.

For this, we consider the following examples:

5.3.3.1 Example 1: Straight interface

On Ω := (0, 1)d, d = 2, 3, with ΓD := {x ∈ ∂Ω |x = 0 ∨ x = 1} and ΓN := ∂Ω\ΓD, we define the

level set function

φ(x, t) := x0 + Vn⃗t− cos

Ç
θπ

180◦

å
x+ sin

Ç
θπ

180◦

å
y (5.39)

for the time interval [0, 1] with θ ∈ [0◦, 360◦]. The zero level Γ(t) separates Ω into the subdo-

mains Ω1(t) := {x ∈ Ω : φ(x, t) < 0} and Ω2(t) := {x ∈ Ω : φ(x, t) > 0}, t ∈ [0, 1]. Now, we

choose the data f , gN, and gD so that the function

u(x, t) :=

⎧⎪⎪⎨⎪⎪⎩
2Vn⃗φ(x, t) on Ω1(t)

exp
(
Vn⃗φ(x, t)

)
− 1 on Ω2(t)

(5.40)

is a solution of the Stefan problem given by equations (5.34), (5.36) and (5.38) for ρ|Ωi = c|Ωi =

λ|Ωi = 1, i = 1, 2, u1,2 = 0, and L = 1. The solution u(·, t) is visualized for Vn⃗ = 0.5, x0 = 0.2,

and θ = 85◦ in Figure 5.12.

5.3.3.2 Example 2: Straight interface

On Ω := (0, 1)d, d = 2, 3, with ΓD := {x ∈ ∂Ω | y = 0 ∨ y = 1} and ΓN := ∂Ω\ΓD, consider the

two-phase Stefan problem (5.36) to (5.38) with ρ|Ωi = c|Ωi = 1, λ1 := 1, λ2 := 2, L := 2, and

(a) u at t = 0 (b) u at t = 0.5 (c) u at t = 0.1

Figure 5.12 Example 1: Different level sets including the zero level set (yellow) of
the analytical solution u at different time instants t.

120 Chapter 5: Numerical results

(a) u at t = 0 (b) u at t = 0.15625 (c) u at t = 0.3125

Figure 5.13 Example 2: Different level sets including the zero level set (yellow) of
the analytical solution u at different time instants t.

u1,2 := 0 so that an analytical solution to problem is given by

u(x, t) =

⎧⎪⎨⎪⎩ cos
Ä
πx
2

ä
sin
(
πφ(x,t)
y−φ(x,t)

)
+ φ(x, t) on Ω1(t)

cos
Ä
πx
2

ä
sin
(

πφ(x,t)
2(y−φ(x,t))

)
+ 1

2φ(x, t) + ey + 11
11t+5 on Ω2(t)

, (5.41)

for [t0, tf] := [0, 5 · 2−3] and

φ(x, t) := y − ln

Ç
11

11t+ 5

å
. (5.42)

The corresponding interface represented by the zero level set Γ(t), separating Ω into the sub-

domains Ω1(t) (φ < 0) and Ω2(t) (φ > 0), is a straight horizontal line (d = 2) or plane (d = 3)

moving downwards. The source term f for the right-hand-side, the boundary functions gD and

gN, and the initial conditions chosen with respect to (5.41). The analytical solution u(x, t) with

interface Γ(t) is shown for different points in time in Figure 5.13.

5.3.3.3 Example 3: Circular interface

Now, let Ω := (−2, 2)d, d = 2, 3 be a domain with ΓD := ∂Ω. For t ∈ [0, 1], we define the level

set function

φ(x, t) := ∥x∥2 − r0 − t (5.43)

which separates Ω into Ω1(t) (φ < 0) and Ω2(t) (φ > 0) and chose the data f and gD such that

u(x, t) :=

⎧⎪⎪⎨⎪⎪⎩
0 on Ω1(t)

∥x∥2 − r0 − t on Ω2(t)
(5.44)

is a solution of problem (5.36) to (5.38) for ρ|Ωi = c|Ωi = λ|Ωi = 1, i = 1, 2, u1,2 = 0, and L = 1.

A characteristic of this example is that we have Vñ = 1 and the solution u(x, t) with r0 = 0.15

is shown for different points in time in Figure 5.14

Chapter 5: Numerical results 121

(a) u at t = 0 (b) u at t = 0.5 (c) u at t = 1

Figure 5.14 Example 3: Different level sets including the zero level set (yellow) of
the analytical solution u at different time instants t.

(a) u at t = 0 (b) u at t = 0.375 (c) u at t = 0.75

Figure 5.15 Example 4: Different level sets including the zero level set (yellow) of
the analytical solution u at different time instants t.

5.3.3.4 Example 4: Circular interface

Last but not least, consider on Ω := (−1, 1)2 with ΓN := ∂Ω for t ∈ [0, 34] the level set function

φ(x, t) := R2(t)−||x||2 (5.45)

with R(t) := R0 +
1
2 sin (πt) separating Ω into Ω1(t) (φ < 0) and Ω2(t) (φ > 0). The corre-

sponding zero level set Γ(t) is a d−sphere with radius R(t) that is centered at the origin and

expands for t ≤ 0.5 and then shrinks again. Now we choose the right-hand-side term f , the

Neumann boundary function gN, and the initial conditions such that

u(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A
Ä
||x||22 −R(t)2

ä
on Ω1(t)

A
Ä
||x||22 −R(t)2

ä
−R(t)− Ṙ(t)

Ä
||x||2 −R(t)

ä
+

Ṙ(t)

(
Ṙ(t)+

1
R(t)

)
2(||x||2−R(t))

2 on Ω2(t)
(5.46)

is a solution the two-phase Stefan problem for ρ|Ωi = c|Ωi = λ1 = λ2 = 1, L = 1 and u1,2 = 0.

Please note that we have to choose A > Ṙ(t)
2R(t) to ensure u < 0 on Ω1(t) and u > 0 on Ω2(t). The

122 Chapter 5: Numerical results

solution u(x, t) is visualized for R0 = 0.3 and A = 4.1 for different points in time in Figure 5.15.

5.3.4 Results

The results of the validation tests and parameter studies listed in (SP 1) to (SP 3) are given in

our publications [93, 102, 103, 105]. We give a brief overview about our findings in the following

list:

(Result 1) When reducing the problem to a heat equation with prescribed interface evolution,

the XFEM solver converges with the optimal rates in (almost) every example, see

[102].

(Result 2) Both approaches for computing a velocity field provide satisfying results. Although,

it has to be noted that the approximation quality of the DCSE method is superior

to the DGE approach in most of the examples. Unfortunately, the DSCE method

can be sensitive to the step size parameter δ, see [93].

(Result 3) When considering the completely coupled problem, where the velocity is derived

from evaluating the Stefan condition using either the DGE or DCSE method, the

convergence rates are only suboptimal in some situations, see [93, 103]. Further

studies showed that this is a result of the imprecision when computing the velocity

field. Therefore, the convergence rates are worse if the temperature gradients differ

significantly in the vicinity of the interface.

(Result 4) However, depending on the choice of δ, we obtain satisfying convergence rates in

every example when considering the coupled problem. As the approximation errors

of some of the considered examples are heavily dominated by either the time or the

spatial error, it is necessary to choose a sufficiently fine discretization.

(Result 5) Moreover, it has to be noted that the narrow band approach can only be used for

suitable parameters that satisfy the CFL conditions. Otherwise, intermediate time

steps are introduced, which has an impact on the observed convergence rates.

(Result 6) The stabilization parameter λ has to be sufficiently large. It is recommended to use

a value that is at least one magnitude larger than required for the stability, see [50].

For larger values, the parameters have no significant impact on the convergence

behavior.

We exemplarily show the results of the convergence study for the example Section 5.3.3.2.

Chapter 5: Numerical results 123

5.3.5 Convergence analysis for Section 5.3.3.2

Following the theory presented in [107], we define the L2-error

∥u− uh∥L∞(L2) := max
t∈(t0,tf)

∥u(·, t)− uh(·, t)∥L2(Ω), (5.47)

which can be bounded by

∥u− uh∥L∞(L2) ≤ c0
Ä
c1∆t+ c2(∆t)

2 + c3h
m+1
ä
, (5.48)

and the (semi) H1-error

∥∇u−∇uh∥L2(L2) :=

√∫ tf

t0

∥∇u(·, t)−∇uh(·, t)∥2L2(Ω) dt, (5.49)

which can be bounded by

∥∇u−∇uh∥L2(L2) ≤ c0
Ä
c1∆t+ c2(∆t)

2 + c3h
m+1 + c4h

m
ä
. (5.50)

Using the implicit Euler scheme for time discretization and m = 1 as polynomial degree for the

eXtended approximation space Vh that is based on the (conventional) function space V m
cg,h, the

optimal orders of convergence are

∥u− uh∥L∞(L2) = O(∆t+ h2) (5.51)

and

∥∇u−∇uh∥L2(L2) = O(∆t+ h). (5.52)

We consider the two-phase Stefan problem for the setting as specified in Section 5.3.3.2 on a

regular triangulations Sh for several mesh sizes h = 1
Nel

√
2 and time step sizes ∆t. To show

that the method provides the optimal convergence orders in both the mesh size and the time,

we have to choose the counterpart sufficiently small, cf. Equations (5.51) and (5.52).

Choosing the DCSE method with δ = 0.5, we first present the convergence behavior in space

for Nel = {2× 102, 2× 152, 2× 202, 2× 2522× 302} elements while choosing the time step size

∆t = 2−8. The results for the ∥u− uh∥L∞(L2) and ∥∇u−∇uh∥L∞(L2) errors and the estimated

orders of convergence are given in Table 5.3 and the corresponding values for the difference

∥∇u − ∇uh∥L2(L2) are shown in Table 5.4. With respect to the time variable, the errors and

convergence behavior of the ∥u− uh∥L∞(L2) error are shown in Table 5.5. As we can see in all

tables, the optimal orders can be achieved.

124 Chapter 5: Numerical results

Nel ∥u− uh∥L∞(L2) eoc ∥u− uh∥L∞(H1) eoc

2× 102 0.217337 - 2.02533 -
2× 152 0.0769138 2.5619 1.06039 1.6036
2× 202 0.0463953 1.7571 0.806164 0.9562
2× 252 0.0284696 2.1886 0.61892 1.1872
2× 302 0.0184754 2.3716 0.481172 1.3826
2× 352 0.0138268 1.8802 0.415048 0.9602

Table 5.3 Approximation errors and estimated order of convergence for the example presented in
Section 5.3.3.2 using ∆t = 2−8.

Nel ∥∇u−∇uh∥L2(L2) eoc

2× 102 0.496109 -

2× 152 0.305875 1.1928

2× 202 0.220111 1.1438

2× 252 0.168133 1.2072

2× 302 0.136743 1.1334

2× 352 0.115692 1.0845

Table 5.4 Approximation errors and esti-
mated order of convergence for the example
presented in Section 5.3.3.2 using ∆t = 2−8.

∆t ∥u− uh∥L∞(L2) eoc

2−3 0.9288 -

2−4 0.2844 1.707

2−5 0.1514 0.909

2−6 0.0506 1.580

2−7 0.0263 0.940

Table 5.5 Approximation errors and esti-
mated order of convergence for the example
presented in Section 5.3.3.2 using Nel = 44.

5.4 Laser welded hybrid joints

The first application with industrial background that we consider is the process to generate

laser welded hybrid overlap joints, see Section 1.1.2. Recall that for the generation of hybrid

overlap joints, a steel and an aluminum sheet are arranged with a small overlapping region, cf.

Figure 5.16. A laser heat source is applied to the steel sheet and the energy is conducted into

the aluminum sheet. Due to the significantly lower melting temperature of aluminum compared

to steel, the aluminum melts and wets the steel. After switching off the laser and the completion

of the solidification process, a hybrid joint is generated.

The described process can be modeled mathematically in a continuum mechanical framework.

The corresponding model has to (at least) include the heat equation on all subdomains (steel,

and aluminum), the two-phase Stefan problem, and the Navier-Stokes equations for incom-

pressible fluids and a free capillary surface [13]. The Stefan problem is used to describe phase

changes within the aluminum, and the Navier-Stokes equations model the fluid dynamics in

the molten part. At outer and inner domain boundaries, conditions for laser heating, thermal

conduction, and radiation described by the Stefan-Boltzmann law have to be included, see, e.g.,

[9]. In addition, we need to include wetting conditions. A full 2D mathematical cross-section

model for generating laser welded hybrid overlap joints can be found in [13].

Chapter 5: Numerical results 125

aluminum steel

laser

aluminum

aluminum
steel

steel

Figure 5.16 Generation of laser-welded hybrid joints.

5.4.1 Modeling the process with the hierarchical level set method

While considering the complete process model and performing simulations for different process

configurations is beyond the scope of this thesis, we use this process to demonstrate the en-

hanced modeling possibilities when using the presented method and the capability of miXFEM to

handle topology changes and the nucleation of new subdomains and corresponding interfaces.

Moreover, we extend previous model approaches of the process by taking into account not only

the steel and aluminum sheets but also the surrounding gas atmosphere. However, to simplify

the problem, we neglect the fluid dynamics and geometric changes of the workpiece and only

consider parts of the melting process instead.

Modeling approach

In brief, the fundamental idea of our simplified model is to use three hierarchically ordered

level set functions to decompose a hold-all domain Ω ⊂ Rd, d = 2, 3, into four subdomains.

The initial configuration and different process stages at some points in time are visualized for

d = 2 in Figure 5.17. Given a time interval [t0, tf] and an initial geometry Γ1(t0), we first define

φ1 ∈ C1(Ω× (t0, tf)) ∩ C0(Ω̄× [t0, tf]) as signed distance function to Γ1(t0) such that its zero

level set Γ1(t0) separates the surrounding atmosphere (φ1 < 0) from the workpiece (φ1 > 0).

The workpiece is decomposed by the zero level set Γ2 of a signed distance function φ2 ∈ C1(Ω×
(t0, tf)) ∩ C0(Ω̄× [t0, tf]) of less hierarchical order into steel (φ2 < 0) and aluminum (φ2 > 0).

On a comparatively small part ΓL ⊂ Γ1, a (laser) heat source is applied, introducing energy

into the workpiece. On the remaining part of the boundary Γ1 \ ΓL and across the boundary

Γ2 separating steel and aluminum, we assume continuity of the heat flux and temperature

u ∈ C0(Ω̄ × [t0, tf]). Furthermore, since we assume that the temperature u only exceeds the

melting temperature u3,4 of aluminum but not the melting temperature of steel, we only have to

126 Chapter 5: Numerical results

(a) Situation at time t0. (b) Nucleation of molten aluminum. (c) Melt pool evolves and penetrates
aluminum sheet.

Figure 5.17 Different process stages of the hybrid welding process.

take into account phase changes within the aluminum. Therefore, we represent the solid-liquid

interface by the zero level set Γ3 of another hierarchically subordinated signed distance function

φ3 ∈ C1
Ä
Ω×

Ä
(t0, tf) \ T

ää
∩C0

Ä
Ω̄×

Ä
[t0, tf] \ T

ää
which separates the aluminum into a solid

part (φ3 < 0) and a liquid part (φ3 > 0). As before, we model the evolution of Γ3(t) in time by

the Stefan condition. However, while the (active parts of the) zero level sets Γ1 and Γ2 of the

functions φ1 and φ2 are present for all t ∈ [t0, tf], φ3, or Γ3 to be more precise, only exists if

u(x, t) > u3,4 for some x ∈ Ω \ (Ω1 ∪ Ω2), t ∈ [t0, tf]. For example at the initial state we have

u(x, t) < u3,4 for all x ∈ Ω; hence, we have to detect the times and places when and where

topological changes, such as nucleation or dissolution of melt, occur within our model and the

computational method. Unfortunately, this also means that we have to consider such points in

time within our model.

The fundamental idea to detect topology changes and the times when they occur is as follows:

Firstly, we introduce the function φ̌3(x, t) := u(x, t) − u3,4
¶ whose hierarchically active zero

level set is

Γ̌3(t) =
{
x ∈ Ω : φ̌3(·, t) = 0 ∧ φi(x, t) > 0, i = 1, 2

}
for t ∈ [t0, tf]. (5.53)

With this, we define a set of times where the topology changes by

T1 :=
¶
t ∈ [t0, tf] : Γ̌3(t) ̸= Γ−

3 (t) ∧measd−1(Γ̌3(t) \ Γ−
3 (t)) ≥ ϵ > 0,

with 1 ≫ ϵ ∈ R+
©
,

(5.54)

(5.55)

with the notation Γ−
3 (t) := lim

τ∈[t0,tf]↗t
Γ3(τ) and Γ3(t0) = ∅. To also model topological changes

where small connected volumes of melt, whose volume is below a given tolerance, dissolve, we

¶Please note that we cannot use φ̌3(x, t) as level set function since we may not have enough regularity, cf.
Remark 5.1.

Chapter 5: Numerical results 127

separate the domain Ω4(t) :=
{
x ∈ Ω : φi(x, t) > 0, i = 1, 2, 3

}
into its connected subdomains

ω(t) with
⋃Nsub(t)
j=1 ωj(t) = Ω4(t), t ∈ [t0, tf]. Based on this, we define the index set

L(t) :=
¶
j ∈ {1, . . . , Nsub(t)} : measd−1(∂ωj(t)) ≤ δ < ϵ, δ ∈ R+

©
for t ∈ [t0, tf], (5.56)

the boundaries of the dissolved domain

Ξ(t) :=
⋃

l∈L(t)
∂ωl(t) \ ∂Ω, (5.57)

and the set of times, when the topology changes due to dissolution by

T2 :=
¶
t ∈ [t0, tf] : L−(t) ̸= ∅

©
. (5.58)

The total set of points in time when the topology changes is then given by T = T1 ∪ T2∥. For

all t ∈ T , we define φ3(x, t) as corresponding signed distance function to

Γ3(t) := Γ̌−
3 (t) \ Ξ

−(t). (5.59)

for all x ∈ Ω \ Ω1(t) and extend it to Ω∗∗.

Remark 5.4. By modeling the workpiece geometry by the zero level set of φ1 ∈ C1(Ω×(t0, tf))∩
C0(Ω̄ × [t0, tf]), we would smoothen the corners of the sheets when considering the complete

geometry. However, doing so is actually advantageous as it supports the wetting of the steel

sheet. In our previous simulations using the conventional finite element method, we therefore

had to add small wetting segments, see [13].

Remark 5.5 (A comment on the process configuration). Within our modeling, we assume that

the temperature never reaches the melting temperature of steel. If we want to drop this as-

sumption, we have to include an additional level set function which decomposes the molten

and the solid part of the steel. However, introducing this function would cause a very different

modeling setup since it would need to be of higher hierarchical order than the current functions

φ2 and φ3.

Coupled model

Altogether, the simplified model for the simulation of the described process is as follows: Assum-

ing that for t ∈ [t0, tf] the workpiece geometry Γ1(t) and workpiece material composition Γ2(t) as

well as the corresponding signed distance functions φ1, φ2 ∈ C1(Ω×(t0, tf))∩C0(Ω̄×[t0, tf]) are a

priori known, and that Γi(t), i = 1, 2, is sharp and sufficiently smooth for all t ∈ [t0, tf], then our

∥Note that the set T1 and T2 are not necessarily disjoint since nucleation and dissolution can occur at different
positions at the same time.

∗∗In practice, this means that we define φ3 as signed distance function to a (reduced and smoothed) zero level
set Γ̌3 ⊆ Γ̃3 of φ̌3 (which is defined on the hold-all Ω).

128 Chapter 5: Numerical results

reduced coupled model of the laser welding process for hybrid joints reads: Find the solid-liquid

interface Γ3 which is the zero level set of φ3 ∈ C1
Ä
Ω×

Ä
(t0, tf) \ T

ää
∩ C0

Ä
Ω̄×

Ä
[t0, tf] \ T

ää
and the temperature distribution u ∈ C0(Ω̄×[t0, tf]) which is sufficiently smooth, i.e. u(·, t)|Ωi

∈
C2(Ωi(t)) and ∂tu(·, t) ∈ C0

Ä⋃4
i=1Ωi(t)

ä
such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρc
∂u

∂t
−∇ · (λ∇u) = 0 in

⋃4

i=1
Ωi(t), t ∈ (t0, tf),

u = gD on ΓD × (t0, tf],

−λ∇u · n⃗ = gN on ΓN × (t0, tf],

−λ∇u · n⃗ = gR(u) on ΓR × (t0, tf],

JuK = 0 on Γ1(t),

Jλ∇uK · n⃗1 = g1 on Γ1(t),

JuK = 0 on Γ2(t),

Jλ∇uK · n⃗2 = 0 on Γ2(t),

u(·, t) = u3,4 on Γ3(t),

u(·, t0) = u0 in
⋃4

i=1
Ωi(t0),

(5.60a)

(5.60b)

(5.60c)

(5.60d)

(5.60e)

(5.60f)

(5.60g)

(5.60h)

(5.60i)

(5.60j)

⎧⎪⎨⎪⎩
(λ3∇u3 − λ4∇u4) · n⃗3 = ρLV⃗3,4 · n⃗3 on Γ3(t), t ∈ [t0, tf] \ T ,

∂φ3

∂t
+ V⃗3,4 · ∇φ3 = 0 in Ω× [t0, tf] \ T ,

(5.61a)

(5.61b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̌3(·, t) :=u(·, t)− u3,4 in Ω× [t0, tf],

Γ3(t) :=
{
x ∈ Ω : φ̌3(x, t) = 0 ∧ φi(x, t) > 0, i = 1, 2

}
\ Ξ−(t) t ∈ T ,

φ3(·, t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− min
y∈Γ3(t)

∥x− y∥2, if x ∈ Ω3

min
y∈Γ3(t)

∥x− y∥2, if x ∈ Ω4

smooth else

, in Ω(t), t ∈ T ,

(5.62a)

(5.62b)

(5.62c)

holds for given sufficiently smooth data. The function gD is usually defined as ambient tem-

perature, gR describes cooling, cf. equation (5.29), and gN is usually chosen to be zero which

corresponds to isolation. The outer unit normals n⃗i(t,x) to Γi(t) are pointing from Ωi into Ωl,

1 ≤ i < l ≤ 4.

On the workpiece boundary Γ1(t), we define

g1(x, t) =

⎧⎪⎪⎨⎪⎪⎩
gL(x, t) if x ∈ ΓL(t) ⊂ Γ1(t)

0 if x ∈ Γ1(t) \ ΓL(t)
, (5.63)

Chapter 5: Numerical results 129

as interface condition, where

gL(x, t) = I0

Çx− xL(t)

rL(x)

å2

· exp

Ñ
−
2
x− xL(t)

2
rL(x)2

é
(5.64)

includes a laser heat source located at xL(t) with a Gaussian-like distributed intensity profile

which is applied on a small subset ΓL(t) ⊂ Γ1(t) of the workpiece boundary. Therein,

I0 =
2PL

r2f0π
(5.65)

is the intensity maximum, with PL denoting the laser power and rL is the laser beam radius

in focus height z0 which depends, among others, on the wave length λL of the laser beam and

rL(x) is the current laser beam width

rL(x) = rL,0

Ñ
1 +

Ç
z − z0
zRay

å2
é 1

2

(5.66)

which depends on the Rayleigh length zRay.

5.4.2 Discretization and computational approach

On first glance, the problem given by (5.60) to (5.61b) is much more complicated than the

problem discussed in Section 5.3 as it involves more domains and level set functions as well as

different conditions and topological changes. However, we can use the same decoupling strategy

to break down this problem into subproblems due to the obvious analogy of the problems. The

arising subproblems are then discretized using the same approaches as presented in Section 5.3.2.

However, we now have to extended the computational scheme to detect and consider topological

changes.

For doing so, we extend the computational scheme along equations (5.62a) to (5.62c) in a

straight-forward way: First of all, we drop the idea of introducing major and intermediate time

steps, but always compute the time step size based on the CFL conditions. Moreover, instead of

using the level set toolbox to capture the evolution of the solid-liquid interface, we first evaluate

the temperature un on the whole domain for each time step tn and define φ̌n3 , compute its zero

level set Γn3 , and introduce the corresponding signed-distance function φn3 . Only after doing so,

we compute the velocity field V⃗ n
3,4 based on the Stefan condition and determine the evolution

of Γn3 to Γn+1
3 by solving the level set problem given by (5.61b). As we do not know if the

topology changes a priori, we construct a new φ3 for each time step which corresponds to a

reinitialization step in some way.

130 Chapter 5: Numerical results

Algorithm 6 Computational approach for the welding process for hybrid joints.

Input: Ω, ΓD, ΓN, ΓR, Sh, φ1(t0), φ2(t0), u(t0), u1,2, f, κ, λ, ρ, c, L,
gD, gN, gR, t0, tf , ∆tmax, ∆tmin, βO, βI , γ.

Output: unh, Γ
n
3,h, V⃗

n
3,4,h for n > 0.

1: procedure Simulation of the welding process for hybrid joints.
2: Initialization: tn = t0, u

n
h = u(t0), φ

n
i,h = φi(t0), Γ

n
i,h = Γi(t0), i = 1, 2.

3: while tn < tf do
4: Define φ̌n3,h(x) := unh(x)− u3,4 for x ∈ Ω.

5: if Γn3,h :=
¶
x ∈ Ω : φni,h(x) ≥ 0, i = 1, 2,∧φ̌n3,h(x) = 0

©
̸= ∅ then

6: Define φn3,h(x) as signed distance function to Γn3,h and extend it to Ω.
7: if the narrow band method is applied then
8: Initialize Ω3,INB and Ω3,ONB with φn3,h.
9: end if

10: Compute V⃗ n
3,4 by evaluating (5.61a) with an approach presented in Section 4.4.2.

11: Compute ∆t := min{max{∆tCFL,∆tmin},∆tmax, tf − tn}.
12: tn+1 := tn +∆t.
13: Compute new level set function φn+1

3,h by solving (5.61b).

14: Compute the new discrete interface Γn+1
3,h from φn+1

3,h .
15: else
16: Compute ∆t := min{∆tmax, tf − tn}.
17: tn+1 := tn +∆t.
18: end if
19: Define V 1

h,gD
(tn+1).

20: Compute un+1
h by solving (5.60).

21: end while
22: end procedure

In addition, we now have not only an evolving domain but also the configuration of the interfaces

Γ1(t) and Γ2(t) changes. While initially we have

Γ1(t0) := Γ1,2(t0) ∪ Γ1,3(t0) (5.67)

and

Γ2(t0) := Γ2,3(t0), (5.68)

cf. Figure 5.17(a), new interfaces arise due to the nucleation of the melt and the solid-liquid

interface Γ3(t) = Γ3,4(t), see Figure 5.17(b). Due to the evolution of the melt, we can end up

with

Γ1(t) := Γ1,2(t) ∪ Γ1,3(t) ∪ Γ1,4(t) (5.69)

and

Γ2(t) := Γ2,3(t) ∪ Γ2,4(t) (5.70)

for some t ∈ (t0, tf] as visualized in Figure 5.17(c). To take this into account and to be able to

impose different boundary conditions on the each part Γi,l of Γi, we have to include all possible

combinations within our discrete variational formulation implemented in UFL. Using miXFEM’s

Chapter 5: Numerical results 131

Figure 5.18 Initial state: Steel and aluminum sheet overlap. The boundary Γ1

between air and workpiece is shown in white, materials are separated by Γ2 visualized
in red.

domain id mapping concept, we then can impose different interface conditions at each part

Γi,l ⊆ Γi. The complete computational approach is presented in Algorithm 6.

5.4.3 Results

We now present simulation results on a 2D cross-section domain for the generation of a overlap

hybrid joint using laser welding consisting of an aluminum 3.2315 sheet with thickness 1.2 mm

and a steel 1.0330 sheet with thickness 1.0 mm without using shielding gas. The material

parameters of both sheets and the surrounding atmosphere are specified in Table 5.6 and the

process parameters are given in Table 5.7.

132 Chapter 5: Numerical results

Figure 5.19 Laser is applied to the steel sheet and heat is conducted. The level set
corresponding to the melting temperature of aluminum is shown in yellow. As it is
well below the melting temperature of steel, it does not have an impact on the steel

sheet.

Setup: Let Ω = (−8mm, 8mm)2 with ∂Ω = ΓR be a fixed domain and t ∈ [0 s, 0.1 s]. We

describe the boundary Γ1(t) between workpiece and surrounding atmosphere by the zero level

set of the function

φ1(x, t) := r0 −
x− cgeo − n⃗geo · (x · n⃗geo)

2

(5.71)

with r0 = 1.1 mm, cgeo = (0, 0)T , and n⃗geo = (1, 0)T . The steel and aluminum sheet are

separated by the zero level set Γ2(t) of the function

φ2(x, t) := y0 − y (5.72)

Chapter 5: Numerical results 133

Figure 5.20 Due to the increasing amount of energy introduced by the laser, the
aluminum heats up and a melt pool nucleates.

with y0 = 0.1 mm. The boundary ΓL(t) on which the laser heat source is active is given by

ΓL(t) := {x ∈ Γ1(t) : ∥x− cgeo∥2 ≤ rL}, (5.73)

with rL = 1.5 mm.

For the numerical simulation, we used an implicit Euler scheme for time discretization and the

polynomial degree m = 1 for the hierarchically eXtended approximation space Vh that is based

on the (conventional) function space V m
cg,h. The computational mesh consists ofNel = 2×150×75

elements and the time step size is ∆ ∈ [10−6, 5 · 10−5], depending of the CFL conditions. For

the velocity computation scheme, we used the DSCE method with δ = 0.4. The narrow band

parameters for φ3 are βI = 2, βO = 4, and γ = 6.

134 Chapter 5: Numerical results

Figure 5.21 The melt pool evolves due to the applied laser energy.

Results: Visualizations of the numerical results are given in Figures 5.18 to 5.22. Therein

we show the temperature distribution and the various subdomains for different points in time.

Initially, we have overlapping solid steel and aluminum sheets which are surrounded by a gas

atmosphere, Figure 5.18. The laser is applied on ΓL(t) ⊂ Γ1(t) and heats the steel which con-

ducts the energy to the aluminum, Figure 5.19. After some time, when the heat is transported

through the steel sheet and the temperature in the aluminum exceeds the melting temperature

u3,4, the aluminum changes it phase and the melt pool nucleates, see Figure 5.20. Figure 5.21

shows the further evolution of the melt pool which finally penetrates the aluminum sheet com-

pletely, see Figure 5.22. Now, we would have to consider the free capillary surface of the melt

pool, which is not taken into account here as we consider a reduced model and neglect the fluid

dynamics.

Chapter 5: Numerical results 135

Figure 5.22 The amount of molten aluminum increases further, now the aluminum
sheet is penetrated and the melt has a free surface.

Remark 5.6 (Continuity of the temperature at the triple point). In fact, the conditions at the

triple points, which are continuity of the temperature across all involved subdomains and a

jump in the temperature gradient across Γ3, cannot both be satisfied. This is because we

have not enough degrees of freedom in non-melting subdomain. In our method, we put more

weight on the continuity of the temperature (by choosing larger stabilization parameters for

this condition) and, hence, introduce a hierarchical order of conditions in some way.

Remark 5.7 (Nucleation and dissolution of subdomains). In practice, the detection nucleation

and dissolution of subdomains is subject to the discrete representation of the subdomain and,

hence, the mesh resolution and the chosen approximation space of the corresponding level set

function.

136 Chapter 5: Numerical results

Table 5.6 Material properties of air, steel 1.0330 and aluminum 3.2315 (solid/liquid)[3–5].

symbol air 1.0330 3.2315 (sol.) 3.2315 (liq.) description

u0 293 293 293 - initial temperature [K]

ua 293 293 293 293 ambient temperature [K]

um - 1700 933 - melting temperature [K]

ρ 1.2041 7860 2700 2700 density
[
kg
m3

]
c 830 460 900 900 specific heat capacity

[
J

kgK

]
λ 0.0262 60 160 110 thermal conductivity

î
J

mK

ó
L - - 386000 386000 latent heat

[
J
kg

]
Table 5.7 Process parameters.

symbol value description

PL 2100 laser power [W]

λL 1.03 · 10−6 laser wave length [m]

rL 1.5 · 10−3 laser beam radius [m]

α 10 heat transfer coefficient
î

W
m2K

ó
ϵ 0.5 radiation coefficient

5.5 A laser-based thermal upsetting process

The next application that will be considered is the laser-based thermal upsetting process, see

Section 1.1.1, which is the first stage of an alternative cold forming process for the generation

of functional parts in micro scale that has been developed within the Collaborative Research

Center (CRC) 747 “Micro Cold Forming”.

Just as the process discussed in Section 5.4, the thermal upsetting process can be modeled

mathematically by considering the heat equation on all subdomains and coupling the two-phase

Stefan problem with the Navier-Stokes equations including a free capillary surface. At outer

and inner domain boundaries, conditions for laser heating, thermal conduction, and radiation

described by the Stefan-Boltzmann law have to be included, see, e.g., [9, 13]. While we have

extensively analyzed the process in various publications, see i.a. [9–11, 13, 108], several finite

element approaches have been specifically developed for the consideration of different process

designs. This is because all previous simulation approaches base on the conventional finite

element method, where physical and computational domain are the same. Hence, all geometrical

changes have to be considered by moving the computational mesh, which also prevented the

consideration of the surrounding atmosphere. In contrast to this, the presented hierarchical

eXtended finite element method allows for decoupling the geometry from the mesh and, thereby,

Chapter 5: Numerical results 137

laser

laser

Figure 5.23 Thermal upsetting process.

significantly enhances our modeling and simulation possibilities. Moreover, it provides a very

flexible framework so that we can also apply the process model to arbitrary geometries.

5.5.1 Modeling the process with the hierarchical level set method

In the following, we show that the implemented framework can be used to simulate (a simplified

version of) the laser-based thermal upsetting process. While we do not model and simulate the

full process including all interdependencies, we still want to point out the advantages of using

the hierarchical finite element method for the modeling and simulation of all process stages.

Therefore, we define a reduced setting where we only consider the thermal aspects on the

workpiece, which is chosen here to be a cylindrical rod, and the surrounding gas atmosphere but

neglect the fluid dynamics. Compared to the process model for the generation of hybrid joints

presented in Section 5.4.1, we now extend the setting and additionally model the evolution of

the workpiece geometry. Since we do not model the fluid dynamics, the geometrical evolution

of the molten domain in time is approximated by an analytical approach which, in a way,

corresponds to considering the application in a zero-gravity environment.

Modeling approach

Let Ω ⊂ Rd, d = 2, 3, be a fixed domain and let [t0, tf] denote the considered time interval.

We model the thermal upsetting process applied to a rod for the given time interval [t0, tf]

using two hierarchically ordered level set functions φ1, φ2 ∈ C1(Ω× (t0, tf)) ∩ C0(Ω̄× [t0, tf]),

see Figure 5.24. Given an initial workpiece geometry Γ1(t0), we first define φ1(x, t0) as signed

distance function to the given workpiece boundary such that its zero level set Γ1(t0) separates

the surrounding atmosphere (φ1 < 0) from the workpiece (φ1 > 0). As before, we separate the

workpiece boundary in a small region ΓL ⊂ Γ1, where a heat source is applied, see Figure 5.24(a),

and assume continuity of the temperature u ∈ C0(Ω̄ × [t0, tf]) on Γ1 \ ΓL. Assuming that the

temperature u exceeds the melting temperature u2,3 of the workpiece at some point in time,

we describe the solid-liquid interface by the zero level set Γ2 of a hierarchically subordinated

138 Chapter 5: Numerical results

(a) Situation at time t0. (b) Nucleation of molten
material.

(c) Melt pool evolves and
forms spherically.

(d) Melt solidifies (after
laser is switched off).

Figure 5.24 Different process stages of the laser-based thermal upsetting process.

function φ2 ∈ C1
Ä
Ω×

Ä
(t0, tf) \ T

ää
∩ C0

Ä
Ω̄×

Ä
[t0, tf] \ T

ää
which separates the workpiece

into a solid part (φ2 < 0) and a molten part (φ2 > 0), see Figure 5.24(b). The melt pool

evolves during the irradiation time, cf. Figure 5.24, until the laser is switched off. Afterwards,

the solidification begins, see Figure 5.24(d). Similarly to the description in Section 5.4.1, Γ2,

whose evolution is driven by the Stefan condition, is only non-empty if u(x, t) > u2,3 for some

x ∈ Ω \Ω1(t) and t ∈ [t0, tf]. Consequently, we again have to detect the points in time T when

the topology changes due to nucleation or dissolution of melt. Analog to the description in

Section 5.4.1, we do this by introducing the function φ̌2(x, t) := u(x, t)− u2,3, the index set L,
and the dissolved domain Ξ(t) to define T and define, for t ∈ T , the zero level set Γ2(t) := Γ̌2(t)

and φ2(x, t) as corresponding signed distance function to Γ2(t) for all x ∈ Ω \ Ω1(t) that is in

a sufficiently smooth way extended to Ω1.

Coupled model

In brief, the reduced model for the thermal upsetting process for the time interval [t0, tf])

reads: Given the initial workpiece geometry Γ1(t0) and the corresponding signed distance

function φ1(x, t0), find the workpiece geometry Γ1(t) given by the zero level set of φ1 ∈
C1(Ω × (t0, tf)) ∩ C0(Ω̄ × [t0, tf]), the solid-liquid interface Γ2(t) given by the zero level set

of φ2 ∈ C1
Ä
Ω×

Ä
(t0, tf) \ T

ää
∩ C0

Ä
Ω̄×

Ä
[t0, tf] \ T

ää
, and the temperature distribution u ∈

C0(Ω̄× [t0, tf]) which is sufficiently smooth, i.e., u(·, t)|Ωi
∈ C2(Ωi(t)) and ∂tu(·, t) ∈ C0(Ω1(t)∪

Chapter 5: Numerical results 139

Ω2(t) ∪ Ω3(t)) for t ∈ [t0, tf] such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρc
∂u

∂t
−∇ · (λ∇u) = 0 in

⋃3

i=1
Ωi(t), t ∈ (t0, tf),

u = gD on ΓD × (t0, tf],

−λ∇u · n⃗ = gN on ΓN × (t0, tf],

−λ∇u · n⃗ = gR(u) on ΓR × (t0, tf],

JuK = 0 on Γ1(t),

Jλ∇uK · n⃗1 = g1 on Γ1(t),

u(·, t) = u1,2 on Γ2(t),

u(·, t0) = u0 in
⋃3

i=1
Ωi(t0),

(5.74a)

(5.74b)

(5.74c)

(5.74d)

(5.74e)

(5.74f)

(5.74g)

(5.74h)

⎧⎪⎨⎪⎩
(λ2∇u2 − λ3∇u3) · n⃗2 = ρLV⃗2,3 · n⃗2 on Γ2(t), t ∈ [t0, tf] \ T

∂φ2

∂t
+ V⃗2,3 · ∇φ2 = 0 in Ω× [t0, tf] \ T ,

(5.75a)

(5.75b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̌2(·, t) :=u(·, t)− u2,3 in Ω× [t0, tf],

Γ2(t) :=
{
x ∈ Ω : φ̌2(·, t) = 0 ∧ φ1(x, t) > 0

}
\ Ξ−(t) t ∈ T ,

φ2(·, t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− min
y∈Γ2(t)

∥x− y∥2, if x ∈ Ω2

min
y∈Γ2(t)

∥x− y∥2, if x ∈ Ω3

smooth else

, in Ω(t), t ∈ T ,

(5.76a)

(5.76b)

(5.76c)

sφ1(φ1, φ2, t) = 0 in Ω× [t0, tf], (5.77)

for given sufficiently smooth data. As before, we introduce a small subset ΓL(t) ⊂ Γ1(t) and

define the function g1(x, t) as in equation (5.64) so that it models the laser heat source applied

on ΓL(t) and enforces continuity of the heat fluxes across Γ1(t) \ ΓL(t). The condition gD is

defined as ambient temperature, gN is usually chosen to be zero which corresponds to isolation,

and gR again describes cooling, cf. equation (5.29). The outer unit normals n⃗i(t,x) to Γi(t)

are pointing from Ωi into Ωl, 1 ≤ i < l ≤ 3. Moreover, sφ1 is an analytical model providing us

with the workpiece geometry and we have a hierarchical order among the level set functions φ1

and φ2.

5.5.2 Discretization and computational approach

Because of the obvious analogy, the problem given by the equations (5.74) to (5.77) is considered

in the same way as the problem modeled and discussed in Section 5.4.2. Therefore, we omit a

140 Chapter 5: Numerical results

detailed presentation and only address the issue of representing the evolving workpiece geometry

described by Γ1(t) and its impact on the computational approach.

As we do not model the fluid dynamics and capillary surface of the melt, we consider the

evolution of the geometry due to changes of the melt pool volume by an analytical model. This

model bases on the observation that the melt forms spherically during the melting process and

preserves its shape during the solidification process. Therefore, we only have to model the

evolution of φ1 during the melting process and preserve the computed geometry as soon as

the solidification process starts. For simplicity, we restrict our presentation to d = 2. The full

analytical approach for the computation of Γ1(tn+1) is visualized in Figure 5.25 and works as

follows:

Given the workpiece geometry Γ1,h(tn) and positions of the interface Γ2,h(tn) and Γ̃2,h(tn+1)

for t0 ≤ tn < tn+1 ≤ tf as well as the corresponding level set functions φ1,h(tn), φ2,h(tn), and

φ2,h(tn+1), we firstly compute the difference in the volume of the solid part

∆V2(tn+1) = V2(tn)− V2(tn+1)

=

∫
{x∈Ω :φ1,h(x,tn)>0∧φ2,h(x,tn)<0}

1 dx−
∫
{x∈Ω :φ1,h(x,tn)>0∧φ2,h(x,tn+1)<0}

1 dx,
(5.78)

cf. Figure 5.25(a).

If ∆V2(tn+1) ≤ 0, the amount of solid material has not changed or even increased due to

solidification and we do not change the geometry due to our assumption that the spherical

shape is preserved. Hence we define φ1,h(tn+1) := φ1,h(tn) and Γ1,h(tn+1) := Γ1,h(tn). However,

if ∆V2(tn+1) > 0, the amount of solid material has decreased and we have to compute a new

geometry Γ1,h(tn+1) and a new corresponding signed distance function φ1,h(tn+1). The new

geometry Γ1,h(tn+1) is constructed by performing the following steps:

(Step 1) Compute the intersection points pl(tn+1), l = 1, 2, of Γ̃2(tn+1) with Γ1,h(tn) and the

new volume of the melt pool at tn+1 by

V3(tn+1) = V3(tn) + ∆V2(tn+1), (5.79)

cf. Figure 5.25(b), with

V3(tn) =

∫
{x∈Ω :φ1,h(x,tn)>0∧φ2,h(x,tn)>0}

1 dx. (5.80)

(Step 2) Since we assume that the melt pool forms spherically, it can be described by large

spherical segment that is actually a sphere which is missing a small spherical segment,

see Figure 5.25(c). As a result, we get the radius r(tn+1) of the new (large) spherical

Chapter 5: Numerical results 141

(a) Situation at time tn. (b) Situation after moving
Γ2,h(tn) with V n+1

1,2 .
(c) Computation of new radius
r(tn+1).

(d) Construction of spheres
s1, s2 with radius r(tn+1).

(e) Construction of the center
of gravity csph(tn+1).

(f) Resulting geometry
Γ1(tn+1).

Figure 5.25 Analytical approach for approximating the evolution of the workpiece
geometry Γ1.

segment by computing the root of

0 = V3(tn+1)−
Ä
Vsph(tn+1)− Vseg(tn+1)

ä
= V3(tn+1)−

Ç
r(tn+1)

2π − 1

2
r(tn+1)

2
Ä
αseg(tn+1)

ä
− sin

Ä
αseg(tn+1)

äå (5.81)

with

αseg(tn+1) = 2 arcsin

Ç
dist(p1(tn+1), p2(tn+1))

2r(tn+1)

å
. (5.82)

(Step 3) After that, we define spheres s1(tn+1) and s2(tn+1) with radius r(tn+1) using the

intersection points p1(tn+1) and p2(tn+1) as center of gravities by

sl(tn+1) :=
{
x ∈ Ω : ∥x− pl(tn+1)∥2 = r(tn+1)

}
, l = 1, 2, (5.83)

142 Chapter 5: Numerical results

cf. Figure 5.25(d), and compute the intersection points p̃1 and p̃2 of the spheres. As

only one of these points is in Ω3(tn), the new center of gravity csph(tn+1) of the melt

is given by

csph(tn+1) :=

⎧⎪⎪⎨⎪⎪⎩
p̃1, if φ2,h(p̃1, tn) > 0

p̃2, if φ2,h(p̃2, tn) > 0
, (5.84)

cf. Figure 5.25(e).

(Step 4) Then, the new workpiece geometry Γ1,h(tn+1) is given by

Γ1,h(tn+1) := {x ∈ Γ1,h(tn) : φ2,h(tn+1) < 0}

∪ {x ∈ Ω : φ2,h(tn+1) > 0 ∧ ∥x− csph(tn+1)∥2 = r(tn+1)},
(5.85)

cf. Figure 5.25(f), and we define φ1,h(tn+1) as corresponding signed distance function

that is positive within the material and negative in the surrounding atmosphere.

Please note that we only use the presented approach if V3(tn+1) > Vcrit(d0), which means

that the volume of the melt V3(tn+1) exceeds a lower boundary Vcrit(d0) that depends on

the diameter d0 of the rod. For example, we can choose Vcrit(d0) = 2
3Vsph. This analytical

approach is presented as pseudo code in Algorithm 7 and the complete computational approach

is presented in Algorithm 8.

Algorithm 7 Computational approach for updating the workpiece geometry.

Input: Ω, Sh, φ1,h(tn), φ2,h(tn), φ2,h(tn+1), Γ1,h(tn), Γ2,h(tn), Γ̃2,h(tn+1), Vcrit.
Output: φ1,h(tn+1), Γ1,h(tn+1).

1: procedure Computational approach for updating the workpiece geometry.
2: Compute ∆V n+1

2 by (5.78).
3: if ∆V n+1

2 ≤ 0. then
4: Γn+1

1,h := Γn1,h.

5: φn+1
1,h := φn1,h.

6: else
7: Compute intersection points pn+1

l of Γ̃n+1
2,h and Γn1,h, cf. (Step 1).

8: Compute V n+1
3 , cf. (5.79).

9: if V n+1
3 ≤ Vcrit. then

10: Γn+1
1,h := Γn1,h.

11: φn+1
1,h := φn1,h.

12: else
13: Compute rn+1 by solving (5.81).
14: Compute center of sphere csph as in (Step 3).
15: Update Γn+1

1,h and φn+1
1,h as described in (Step 4).

16: end if
17: end if
18: end procedure

Chapter 5: Numerical results 143

Algorithm 8 Computational approach for the laser-based thermal upsetting process.

Input: Ω, ΓD, ΓN, ΓR, Sh, φ1(t0), u(t0), u1,2, f, κ, λ, ρ, c, L, gD, gN, gR,
t0, tf , ∆tmax, ∆tmin, βO, βI , γ.

Output: unh, Γ
n
1,h, Γ

n
2,h, V⃗

n
1,2,h for n > 0.

1: procedure Simulation of the laser-based thermal upsetting process.
2: Initialization: tn = t0, u

n
h = u(t0), φ

n
1,h = φ1(t0), Γ

n
1,h = Γ1(t0).

3: while tn < tf do
4: Define φ̌n2,h(x) := unh(x)− u1,2 for x ∈ Ω.

5: if Γn2,h :=
¶
x ∈ Ω : φn1,h(x) ≥ 0 ∧ φ̌n2,h(x) = 0

©
̸= ∅ then

6: Define φn2,h(x) as signed distance function to Γn2,h and extend it to Ω.
7: if the narrow band method is applied then
8: Initialize Ω2,INB and Ω2,ONB with φn2,h.
9: end if

10: Compute V⃗ n
1,2 by evaluating (5.75a) with an approach presented in Section 4.4.2.

11: Compute ∆t := min{max{∆tCFL,∆tmin},∆tmax, tf − tn}.
12: tn+1 := tn +∆t.
13: Compute new level set function φn+1

2,h by solving (5.75b).

14: Compute the new discrete interface Γn+1
2,h from φn+1

2,h .

15: Compute the new discrete interface Γn+1
1,h with Algorithm 7.

16: else
17: Compute ∆t := min{∆tmax, tf − tn}.
18: tn+1 := tn +∆t.
19: end if
20: Define V 1

h,gD
(tn+1).

21: Compute un+1
h by solving (5.74).

22: end while
23: end procedure

5.5.3 Results

We now present simulation results for the thermal upsetting process for a rod of diameter

d0 = 0.2 mm consisting of steel 1.4301 using a coaxial process design, which means that the

laser heat source is applied to the head surface of the rod, in a shielding gas atmosphere. The

Table 5.8 Material properties of Argon and steel 1.4301 (solid/liquid)[3–5].

symbol Argon 1.4301 (sol.) 1.4301 (liq.) description

u0 293 293 - initial temperature [K]

ua 293 293 293 ambient temperature [K]

um - 1673 - melting temperature [K]

ρ 1.784 7900 7900 density
[
kg
m3

]
c 520 830 830 specific heat capacity

[
J

kgK

]
λ 0.0177 15 35 thermal conductivity

î
J

mK

ó
L - 276000 276000 latent heat

[
J
kg

]

144 Chapter 5: Numerical results

Table 5.9 Process parameters.

symbol value description

tL 0.07 irradiation duration [s]

PL 80 laser power [W]

λL 1.03 · 10−6 laser wave length [m]

rL 0.025 · 10−3 laser beam radius [m]

α 100 heat transfer coefficient
î

W
m2K

ó
ϵ 0.5 radiation coefficient

material parameters of the workpiece material and the shielding gas Argon are specified in

Table 5.8 and the process parameters are given in Table 5.9.

Setup: Let Ω = (−1mm, 1mm)2 be a fixed domain with ∂Ω = ΓR and t ∈ [0 s, 0.2 s]. We

describe the initial workpiece boundary by the zero level set Γ1(t0) of the level set function

φ1(x, t0) := min

ß
r0 −

x− cgeo − n⃗geo · (x · n⃗geo)

2
, y0 − y

™
(5.86)

with r0 = 0.1 mm cgeo = (0, 0)T , n⃗geo = (0, 1)T , and y0 = −0.1 mm. The boundary ΓL(t) on

which the laser heat source is active is given by

ΓL(t) := {x ∈ Γ1(t) : ∥x− cgeo∥2 ≤ rL}, (5.87)

with rL = 0.025 mm.

For the numerical simulation, we used an implicit Euler scheme for time discretization and the

polynomial degree m = 1 for the hierarchically enriched approximation space Vh that bases on

the (conventional) function space V m
cg,h. The computational mesh consists of Nel = 2× 39× 78

elements and the time step size is ∆ ∈ [10−6, 10−4], depending of the CFL conditions. For

the velocity computation scheme, we used the DSCE method with δ = 0.3. The narrow band

parameters for φ2 are βI = 2, βO = 4, and γ = 6.

Results: Visualizations of the numerical results for the laser-based thermal upsetting process

are given in Figures 5.26 and 5.27. Therein we show the temperature distribution, the sub-

domains, and the evolution of the geometry for different points in time. The laser is applied

on ΓL(t) ⊂ Γ1(t) and heats the steel which melts after some time. When the volume of the

melt Vmelt(t) exceeds the value of 1
2Vsphere(r0), a new geometry is computed using the analyt-

ical approach, cf. Figures 5.26(a) and 5.27(a). Due to energy introduced by the laser heat

source, the melt pool increases during the irradiation time, see Figures 5.26(b) and 5.27(b).

The melting process continues for a short time period even after the laser is switched off be-

cause of the superheated melt until, finally, the solidification process starts, which is depicted

Chapter 5: Numerical results 145

(a) Initial state (temperature). (b) Melt pool increases (temperature).

(c) Laser is switched off and solidifica-
tion starts (temperature).

(d) Solidification process (temperature).

Figure 5.26 Temperature distribution for different process stages of the thermal
upsetting process: Workpiece boundary Γ1 is shown in white, solid-liquid interface Γ1

is shown in yellow.

146 Chapter 5: Numerical results

(a) Initial state (domains). (b) Melt pool increases (domains).

(c) Laser is switched off and solidifica-
tion starts (domains).

(d) Solidification process (domains).

Figure 5.27 Visualization of the domains for different process stages of the thermal
upsetting process: Workpiece boundary Γ1 is shown in white, solid-liquid interface Γ1

is shown in yellow.

Chapter 5: Numerical results 147

in Figures 5.26(c), 5.26(d), 5.27(c) and 5.27(d). The observable partial loss of the symmetry

of the simulation results during the process time is a result of the the mesh orientation and

discretization errors.

5.6 Keyhole-based laser welding

The last application motivating this thesis is the keyhole-based laser welding process which is

briefly described in Section 1.1.3. In contrast to heat conduction welding, which is, for example,

used to produce hybrid joints, the characteristic of the keyhole welding is that the material is

processed with very high laser beam intensities so that the material vaporizes and a narrow but

deep vapor channel, the keyhole, is formed. This process again can be modeled by considering

the heat equation including the two-phase Stefan problem and the Navier-Stokes equations

with a free capillary surface. In addition, the generation and evolution of the keyhole has to

be modeled, which is a challenging task as keyhole welding processes are highly dynamical and

sometimes unstable in practice [109]. Moreover, such models are very complex since aspects

such as (re)vaporization effects and plasma creation have to be considered.

Remark 5.8 (Using the keyhole effect in other applications). The keyhole effect can of course

also be used within other applications. For example, it is of interest for the production of

preforms generated by the thermal upsetting process, see Sections 1.1.1 and 5.5. The reason

for this is that the keyhole effect allows for higher process speeds and, hence, can be used to

reduce the process duration. This is of significant importance as the industrial production of

preforms aims for high output rates such as 300 preforms per minute.

5.6.1 Modeling the process with the hierarchical level set method

For modeling the keyhole-based laser welding process with the hierarchical level set method, we

neglect the issue of modeling a dynamic keyhole shape but assume that the keyhole geometry is

constant and stable. Moreover, we further simplify the problem and assume that the (constant)

keyhole shape can be computed a priori by an analytical model, see Appendix A, instead of

workpiece(s)laser

welding direction

keyholemelt pool

weld seam

Figure 5.28 Keyhole-based laser welding.

148 Chapter 5: Numerical results

considering the location and shape of the keyhole as part of the solution. By doing so, we can

focus on the numerical applicability of miXFEM and model the process by the heat equation and

the two-phase Stefan problem in level set formulation as in the previous applications. Therefore,

the analytically derived keyhole geometry is considered as internal interface at which we impose

evaporating temperature u1,2 as (Dirichlet) interface condition. While the keyhole geometry is

then translated with the laser motion velocity V⃗L along the welding line, the evolution of the

solid-liquid interface is still part of the solution.

Modeling approach

Let Ω ⊂ R3 be a polygonally bounded domain (the workpiece). We model the process for

t ∈ [t0, tf] by introducing two level set function φ, φ2 ∈ C1(Ω× (t0, tf))∩C0(Ω̄× [t0, tf]) whose

zero level sets Γ1(t) (the keyhole wall) and Γ2(t) (the solid-liquid interface) separate Ω into

disjoint regions Ω1(t) (the vaporized material), Ω2(t) (the molten material), and Ω3(t) (the

solid material). The keyhole model used in the remainder of this section is adapted from the

approach presented in [110] and described in detail in Appendix A. The general idea of the

model is to approximate the keyhole shape for a quasi-stationary situation by considering the

energy balance at the keyhole wall, see Appendix A.4. For given material and laser parameters,

the heat conduction is therefore approximated by a moving line source [111, 112] and the local

inclination angle yielding the keyhole geometry is computed using a point-by-point scheme that

compares absorbed power and conduction losses. Then, φ1(·, t) is defined as corresponding

signed distance function to the computed geometry, cf. Appendix A.6, and we assume that

the temperature u ∈ C0(Ω̄× [t0, tf]) at Γ1(t) corresponds to vaporization temperature u1,2. In

regards to the solid-liquid interface Γ2(t), we compute its initial position Γ2(t0) as zero level

set of ˇφ2(x, t0) = u(x, t0) − u2,3, where u(t0) is a given initial temperature distribution and

u2,3 denotes the melting temperature of the material. The function φ2(x, t0) is then defined

as corresponding signed distance function. The evolution of φ2(·, t) (and hence the interface

Γ2(t)) in time is then modeled by the Stefan problem as in the previous applications. Since we

have Γ1(t) ∩ Γ2(t) = ∅ and u = u1,2 at Γ1 and u = u2,3 at Γ2, the level set functions φ1 and φ2

are hierarchically ordered in a natural way.

Remark 5.9 (Use of other keyhole models). Please note that since the only request for the

thermal problem is that we have an a priori given keyhole geometry on which a Dirichlet

condition for the temperature can be applied, any such keyhole model can be integrated into

this approach††.

††In fact, it is also possible to include an approach where the geometry is part of the solution. However, this
would significantly increase the complexity of the model and, usually, would require adaptive mesh refinement,
see [109, 113].

Chapter 5: Numerical results 149

Coupled model

Assuming that the level set function φ1 ∈ C1(Ω×(t0, tf))∩C0(Ω̄×[t0, tf]), and hence, the keyhole

geometry Γ1(t), is a priori known or can be determined by some approach independently from

the thermal problem for t ∈ [t0, tf], our coupled model for a keyhole-based laser welding process

reads: Find the solid-liquid interface φ2 ∈ C1(Ω×(t0, tf))∩C0(Ω̄× [t0, tf]) and the temperature

distribution u which is sufficiently smooth, i.e., u ∈ C0(Ω̄ × [t0, tf]), u(·, t)|Ωi
∈ C2(Ωi(t)) and

∂tu(·, t) ∈ C0(Ω1(t) ∪ Ω2(t) ∪ Ω3(t)) for t ∈ (t0, tf), such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρc
∂u

∂t
−∇ · (λ∇u) = 0 in

⋃3

i=1
Ωi(t), t ∈ (t0, tf),

u = gD on ΓD × (t0, tf],

λ∇u · n⃗ = gN on ΓN × (t0, tf],

λ∇u · n⃗ = gR(u) on ΓR × (t0, tf],

u(·, t) = u1,2 on Γ1(t),

u(·, t) = u2,3 on Γ2(t),

u(·, t0) = u0 in
⋃3

i=1
Ωi(t0),

(5.88a)

(5.88b)

(5.88c)

(5.88d)

(5.88e)

(5.88f)

(5.88g)

(λ3∇u3 − λ2∇u2) · n⃗2 = ρLV⃗2,3 · n⃗2 on Γ2(t), (5.89)

⎧⎪⎨⎪⎩
∂φ2

∂t
+ V⃗Γ2 · ∇φ2 = 0 in Ω× [t0, tf],

φ2(·, t0) = φ2,0 in Ω,

(5.90a)

(5.90b)

holds for given sufficiently smooth data gD, gN, gR u0, uΓ1 , uΓ2 , and φ2,0. The unit normal

vector n⃗i(t,x) to Γi(t) is defined to point from Ωi into Ωi+1.

5.6.2 Discretization and computational approach

Due to the fact that the keyhole geometry Γ1(t) is known for all t ∈ [t0, tf], the model of the

keyhole process can be decoupled into the familiar subproblems, similar to Sections 5.3 to 5.5,

which are discretized individually. As we do not allow for topological changes during the run

time, the problem comes down to solving a two-phase Stefan problem on a domain consisting

of three subdomains. The computational approach is summarized in Algorithm 9.

5.6.3 Results

The presented model is used to simulate keyhole-based laser welding for the materials aluminum

3.2315, steel 1.0330 and steel 1.4301 whose material properties are given in Table 5.10‡‡. While

‡‡When no value is known, we use for the steel the corresponding value of iron and for aluminum 3.2315 the
value of pure aluminum.

150 Chapter 5: Numerical results

Algorithm 9 Computational approach for the keyhole-based laser welding process.

Input: Ω, ΓD, ΓN, ΓR, Sh, φ1(t), φ2(t0), u(t0), u1,2, , u3,4, f, κ, λ, ρ, c, L,
gD, gN, gR, t0, tf , ∆tmax, ∆tmin, βO, βI , γ.

Output: unh, Γ
n
2,h, V⃗

n
2,3,h for n > 0.

1: procedure Simulation of the keyhole-based laser welding process.
2: Initialization: tn = t0, u

n
h = u(t0), φ

n
i,h = φi(t0), Γ

n
i,h = Γi(t0), i = 1, 2.

3: while tn < tf do
4: if the narrow band method is applied then
5: Initialize Ω2,INB and Ω2,ONB with φn2,h.
6: end if
7: Compute V⃗ n

2,3 by evaluating (5.89) with an approach presented in Section 4.4.2.
8: Compute ∆t := min{max{∆tCFL,∆tmin},∆tmax, tf − tn}.
9: tn+1 := tn +∆t.

10: Compute Γn+1
1,h by evaluation level set function φ1,h for tn+1.

11: Compute φn+1
2,h by solving (5.90) with Algorithm 4.

12: Compute Γn+1
2,h from (reinitialized and volume corrected) φn+1

2,h .

13: Define V 1
h,gD

(tn+1).

14: Compute un+1
h by solving (5.88).

15: end while
16: end procedure

Table 5.10 Material properties of steel 1.4301, steel 1.0330 and aluminum 3.2315 [3–5].

symbol 1.4301 1.0330 3.2315 description

u0 300 K 300 K 300 K initial temperature

ua 300 K 300 K 300 K ambient temperature

um 1673 K 1700 K 933 K melting temperature

uv 3000 K 3000 K 2800 K evaporation temperature

ρ 7900 kg/m3 7860 kg/m3 2700 kg/m3 density

c 830 J/kg K 460 J/kg K 900 J/kg K specific heat capacity

λs 15 J/mK 60 J/mK 160 J/mK thermal conductivity in solid

λl 35 J/mK 40 J/mK 110 J/mK thermal conductivity in melt

L 276000 J/kg 276000 J/kg 386000 J/kg latent heat

αfr 0.38 0.36 0.20 absorption coefficient

we first comment on the effect of multi-reflections on the keyhole shape, the main aspect of

this section is the comparison of experimental results and the simulation findings. For this

purpose, our cooperation partner, the Bremer Institut für angewandte Strahltechnik (BIAS),

has performed experimental studies with varying parameters for the welding speed VL and

laser power PL for each material so that we can compare the simulation outputs with real

experimental results.

Chapter 5: Numerical results 151

Figure 5.29 Visualization of simulation results for steel 1.0330 with VL = 4 m/min
and PL = 2000 W. Keyhole is indicated by the white line, solid-liquid interface is
visualized in yellow. The XFEM approach allows for considering mesh independent

discontinuities.

Simulation setup: For the numerical simulation, we use an implicit Euler scheme for the time

discretization and the polynomial degree m = 1 for the eXtended approximation space Vh that

is based on the (conventional) function space V m
cg,h so that the temperature is a linear function.

The time step size ∆t ∈ [5 · 10−6 s, 5 · 10−4 s] is computed during the run time for each step by

the evaluating the CFL condition (4.23). Due to the symmetry of the problem with respect to

the welding direction, we only consider half of the workpiece. The corresponding mesh consists

of regions with different element sizes where hmin = 4·10−5 mm and hmax = 3·10−3 mm to allow

for a sufficiently efficient computation with respect to all scenarios but is, of course, not fitted

to the internal boundaries Γ1,h and Γ2,h at all. For the boundaries we choose ∂Ω = ΓN ∪ ΓR

with ΓN denoting the symmetry plane, on which we impose gN = 0, and ΓR = ∂Ω \ ΓN is the

workpiece surface on which we assume cooling by gR(u), cf. equation (5.29). A section of the

simulation output during the process is exemplary shown in Figure 5.29. In lack of better data,

we assume that the initial radii of the keyhole at the front, back and side are given by the laser

spot radius for all simulation runs.

Effect of multi-reflection on the keyhole geometry:

As described in Section A.5, only the portion αfr of the intensity is absorbed when a ray impinge

at the material while the remaining part 1−αfr is reflected. Hence, the important characteristic

in keyhole-based laser welding is the partial absorption of a multiple reflected laser ray at each

wall contact. To point out the impact of this effect, Figure 5.30 shows an example of the keyhole

shape without and with multi-reflections for the material steel 1.4301 with αfr = 0.38, VL = 4

m/min, and PL = 2000 W. In this example, it can be observed how the inclusion of multi

reflections generates a keyhole keeping the same width but getting at least twice the penetration

length of the keyhole into the material. Please note that the computed keyhole geometries are

not closed for two reasons, see Appendix A.4, firstly, the discretization of the workpiece in

z-layers and, secondly, because we stop the computational approach if
xf − xr

2
≤ τ or

152 Chapter 5: Numerical results

Figure 5.30 Keyhole geometries without multi-reflections (top) and with multi-
reflections (bottom) for the material steel 1.4301 and the parameters αfr = 0.38,
VL = 4 m/min, and PL = 2000 W. The red and blue lines correspond to the keyhole
wall and the green line indicates the position of the heat source. On the left hand
side, the side view in the x-z plane is shown and on the right hand side, the frontal

view in the x-z plane is visualized.

Chapter 5: Numerical results 153

Figure 5.31 Keyhole geometries with multi-reflections for αfr = 0.38 (top) and with-
out multi-reflections but αfr ≈ 0.60 (bottom) for steel 1.4301 using the parameters
VL = 4 m/min and PL = 2000 W. The red and blue lines correspond to the keyhole
wall and the green line indicates the position of the heat source. On the left hand
side, the side view in the x-z plane is shown and on the right hand side, the frontal

view in the x-z plane is visualized.

154 Chapter 5: Numerical results

Table 5.11 Experimental data and numerical results for aluminum 3.2315.

PL VL zexp wexp,0.5 zsim wsim

3000 W 5 m/min 1.31 mm 2.22 mm 1.32 mm 1.75 mm

3000 W 6 m/min 1.25 mm 1.66 mm 1.25 mm 1.67 mm

Table 5.12 Experimental data and numerical results for steel 1.0330.

PL VL zexp wexp,0.5 zsim wsim

2000 W 4 m/min 1.45 mm 1.20 mm 1.48 mm 1.00 mm

2000 W 5 m/min 1.10 mm 1.11 mm 1.27 mm 0.99 mm

Table 5.13 Experimental data and numerical results for steel 1.4301.

PL VL zexp wexp zsim wsim

2000 W 4 m/min 1.53 mm 1.24 mm 1.45 mm 1.02 mm

2000 W 5 m/min 1.21 mm 1.13 mm 1.26 mm 1.00 mm

∥xs−∥2 ≤ τ , where xf denotes the keyhole front wall, xr the keyhole rear wall, and xs the

keyhole side wall. The value 0 < τ ≪ 1 is the tolerance of the stopping criterion.

For simplicity, many publications that address welding processes neglect multi reflections. In-

stead, the Fresnel absorption rate is chosen significantly higher in order to compensate for their

impact. Using the same scenario as before, Figure 5.31 shows the keyhole shape with multi-

reflections compared to a situation with αfr ≈ 0.6 where no reflections are considered. This can

be done, but there is a high risk of choosing a wrong scaling factor. Notice in the example of

Figure 5.30 that the same penetration depth was obtained, but the geometric shapes differ, in

particular in the lowest part of the keyhole. Furthermore, the scaling factor taken here to get

the same penetration depth was around 1.58, which is not straightforward to know and might

only be useful for this specific combination of material, laser configuration and process speed.

Keyhole-based laser welding for different materials:

Now, we consider keyhole-based laser welding for the materials steel 1.4301, steel 1.0330 and

aluminum 3.2315. As mentioned, the BIAS has performed several experiments for each material

using different parameters for the welding speed VL and laser power PL. The experimental design

is as visualized in the introduction. In more detail, specimens of size 100 mm × 40 mm × 6

mm are welded by a single-mode fiber laser IPG YLR-1000SM with Gaussian beam profile that

is applied to the x− y plane of the metal sheets. In all experiments, no shielding gas is present.

The results of the experiments and simulation runs for each material and process parameter

configuration are given in the Table 5.11 for aluminum 3.3215, in Table 5.12 for steel 1.0330,

and in Table 5.13 for steel 1.4301. In these tables, it can be seen that the simulation always

Chapter 5: Numerical results 155

(a) aluminum 3.2315, PL = 3000 W, VL =
5 m/min.

(b) aluminum 3.2315, PL = 3000 W, VL =
6 m/min.

Figure 5.32 Melt pool geometry: Experimental and numerical results for aluminum
3.2315.

(a) steel 1.0330, PL = 2000 W, VL = 4 m/min. (b) steel 1.0330, PL = 2000 W, VL = 5 m/min.

Figure 5.33 Melt pool geometry: Experimental and numerical results for steel 1.0330.

underestimates the melt pool width while the measured and simulated melt pool depth coincides

very well. Comparing the experimental data to the numerical results, cf. Figure 5.32 for

aluminum, Figure 5.33 for steel 1.0330, and Figure 5.34 for steel 1.4301, the smaller melt pool

width in all simulation runs is obviously a consequence of neglecting the melt dynamics in

the model which would have a significant influence in the upper part of the melt pool due to

buoyancy forces. This assumption is supported by the fact that the difference in the melt pool

width decreases for increasing welding speed.

5.7 Multiphase flow

The last example considered in this thesis is a multiphase flow problem. Motivated by the

benchmarks considered in [114, 115], we model the dynamics of two rising droplets in a fluid

and show that the presented method and its implementation can also be used to model and

simulate problems involving fluid dynamics. Therefore, we assume that all fluids are immiscible

and incompressible. To simplify the setting, we do not allow the droplets to touch each other.

156 Chapter 5: Numerical results

(a) steel 1.4301, PL = 2000 W, VL = 4 m/min. (b) steel 1.4301, PL = 2000 W, VL = 5 m/min.

Figure 5.34 Melt pool geometry: Experimental and numerical results for steel 1.4301.

While we reduce our setting to three fluids, the model and the implementation can be extended

to model n-phase flow in a straightforward way. As this problem is chosen as an example for

applications that can be considered in the future rather than as an real-world application which

has to be thoroughly studied, we keep its presentation and the discussion of results very brief.

5.7.1 Modeling approach

Adapting the presentation of a two-phase flow problem in [115], let Ω ⊂ Rd, d = 2, 3, be a

fixed domain with ∂Ω polygonal and let [t0, tf] denote the considered time interval. We assume

that the domain Ω consists of different immiscible incompressible fluids that are described by

the disjoint subdomains Ωi(t), i = 1, 2, 3. Therein, the fluids represented by Ω1 and Ω2 are

completely surrounded by Ω3, cf. Figure 5.35(a). The interfaces separating the fluids are

denoted by Γ1 and Γ2. The dynamics of all fluids are modeled by the Navier-Stokes equations

[116, 117] which describes the evolution of the velocity u : Ω × [t0, tf] → Rd and the pressure

p : Ω× [t0, tf] → R by

ρ

Ç
∂u

∂t
+ (u · ∇)u

å
+∇p−∇ · σ = ρg in

3⋃
i=1

Ωi(t), t ∈ (t0, tf),

∇ · u = 0 in
3⋃
i=1

Ωi(t), t ∈ (t0, tf),

(5.91a)

(5.91b)

where σ = −pId+µD(u) denotes the stress tensor, ρ the density with ρ|Ωi = ρi, µ the dynamic

viscosity with µ|Ωi = µi, and g is the gravitational force.

Chapter 5: Numerical results 157

(a) Problem setting. (b) Domain decomposition using the hi-
erarchical level set method.

Figure 5.35 Problem setting for the multiphase flow example and decomposition of
the hold-all domain Ω into subdomains Ω1, Ω2, Ω3 by the zero level sets Γ1, Γ2 of

hierarchically ordered level set functions φ1, φ2.

The different fluids are coupled by the interface conditions

Jσ · n⃗1K = τ1C1 · n⃗1 onΓ1(t), t ∈ [t0, tf],

JuK = 0 onΓ1(t), t ∈ [t0, tf],

Jσ · n⃗2K = τ2C2 · n⃗2 onΓ2(t), t ∈ [t0, tf],

JuK = 0 onΓ2(t), t ∈ [t0, tf],

(5.92a)

(5.92b)

(5.92c)

(5.92d)

where

C1 = ∇ · n⃗1, (5.93)

and

C2 = ∇ · n⃗2, (5.94)

are the curvatures of the interfaces, τ1, τ2 denote the surface tensions of the fluids, and n⃗i are

the outwards pointing unit normal vectors to Ωi.

Usually, Γ1(t) and Γ2(t) are only known for t0 while for t > t0, their positions are part of

the solution. Therefore, we couple the problem given by (5.91a) to (5.92d) with the level set

method, see Section 2.1, and describe the evolution of Γ1(t) and Γ2(t) for t ∈ (t0, tf] by the

transport problem (2.7).

5.7.2 Coupled model using the hierarchical level set method

The described setting can be modeled using the hierarchical level set method as follows: Given

the hold-all domain Ω and a time interval [t0, tf], let Ω1(t) and Ω2(t) represent the initial

positions of the droplets whose boundaries are defined by the interfaces Γ1,2(t0) = Γ1(t0) and

Γ2,3(t0) = Γ2(t0). Then, we first introduce the level set functions φi ∈ C1(Ω× (t0, tf))∩C0(Ω̄×

158 Chapter 5: Numerical results

[t0, tf]) as signed distance function to Γi(t0) with φ1(x, t0) < 0 for x ∈ Ω1(t0), φ2(x, t0) < 0

for x ∈ Ω2(t0), and φi(x, t0) > 0 for x ∈ Ω3(t0), i = 1, 2, cf. Figure 5.35(b). As there is

no natural hierarchy given the physics for the droplets, we can make an arbitrary choice and,

thus, assume that φ1 is of higher hierarchy than φ2. Then, the coupled model describing the

evolution of the droplets in another fluid for t ∈ [t0, tf] is given by: Given the interface positions

Γ1,2(t0) and Γ2,3(t0) and sufficiently smooth data, find the locations of the interfaces Γ1,2(t) and

Γ2,3(t) that are the zero level sest of φi ∈ C1(Ω × (t0, tf)) ∩ C0(Ω̄ × [t0, tf]) and the velocity

u : Ω× [t0, tf] → Rd as well as the pressure p : Ω× [t0, tf] → R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

Ç
∂u

∂t
+ (u · ∇)u

å
+∇p−∇ · σ = ρg in

3⋃
i=1

Ωi(t), t ∈ (t0, tf)

u = gD on ΓD × (t0, tf],

∇ · u = 0 in
3⋃
i=1

Ωi(t), t ∈ [t0, tf],

Jσ · n⃗1,2K = τ1C1 · n⃗1,2 onΓ1,2(t), t ∈ [t0, tf],

JuK = 0 onΓ1,2(t), t ∈ (t0, tf),

Jσ · n⃗2,3K = τ2C2 · n⃗2,3 onΓ2,3(t), t ∈ [t0, tf],

JuK = 0 onΓ2,3(t), t ∈ [t0, tf],

u(·, t0) = u0 in
⋃3

i=1
Ωi(t0),

(5.95a)

(5.95b)

(5.95c)

(5.95d)

(5.95e)

(5.95f)

(5.95g)

(5.95h)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂φ1

∂t
+ u · ∇φ1 = 0 in Ω× [t0, tf],

∂φ2

∂t
+ u · ∇φ2 = 0 in Ω× [t0, tf],

(5.96a)

(5.96b)

hold.

5.7.3 Discretization and computational approach

We decouple the problem given by (5.95a) to (5.96b) in a similar way as the applications

presented in the previous sections by using an explicit approach. As a result, we can consider the

subproblems (5.95) and (5.96) separately. While the level set problems for φi(·, t) are considered
using the same discretization approach as before, we approximate the Navier-Stokes equations,

which model the fluid dynamics, by replacing the non-linearity
(
u · ∇)u

)
with

(
w · ∇)u

)
. In

the numerical scheme, w will correspond to the velocity of the previous time step. The resulting

problem is scaled to have enough regularity on the time derivative and then discretized using

Rothe’s method as before. For approximating the time derivative, we use the implicit Euler

scheme so that the problem (5.95) reduces to a series of Oseen problems, see e.g. [118]. With

respect to spatial dimension, we use the Taylor-Hood P2-P1 as conventional finite element

Chapter 5: Numerical results 159

Table 5.14 Material properties of the considered fluids represented by Ωi.

symbol Ω1 Ω2 Ω3 description

µ 1.0 0.1 10 dynamic viscosity [Pa s]

ρ 100 1.0 1000 density
[
kg
m3

]
τ 24.5 1.96 - surface tension

î
N
m

ó
approximation space that is hierarchically enriched with respect to the interface positions Γi(t).

The interface conditions are imposed using Nitsche’s method.

Contrary to the usual characterization of the curvature of the interfaces by using the Laplace-

Beltrami description, we use a more explicit approach by modeling the curvature as described

in (5.93) and (5.94). For this purpose, we introduce the quadratic approximations φi,2h, cf.

Section 4.3.2.1, and compute the curvature for these functions which in turn are then used as

approximations for computing a solution to problem (5.95).

5.7.4 Results

We now present simulation results of the rising droplets example for Ndom = 3 and d = 2.

Setup: On Ω = [−1, 1] × [−0.5, 1.5] consider for t ∈ [0, 5] the evolution of the droplets rep-

resented by Ω1(t) and Ω2(t) in the surrounding fluid Ω3(t). The configuration is chosen such

that we have Ω1(t) ∩ Ω2(t) = ∅ and ∂Ωi(t) ∩ ∂Ω = ∅, i = 1, 2. On the boundary ∂Ω = ΓD, we

assume non-slip condition, i.e., gD = 0 in condition (5.95b). Initially, we have u(·, t0) = 0 and

the droplets Γ1(t0) and Γ2(t0) are given by the zero level sets of the functions

φi(x, t) := ∥x− ci∥2 − ri, i = 1, 2, (5.97)

with c1 = (−0.5, 0)T , r1 = 0.25, c2 = (0.5, 0)T , and r2 = 0.25. The (fictional) material

parameters used for in this example are given in Table 5.14 [114, 115]. Due to the buoyancy

effects caused by the different material parameters, both droplets will rise and change their

shape during the considered time interval.

For the numerical simulation, we used an implicit Euler scheme for the time discretization

and approximate the solution of the problem in the eXtended approximation space Vh that

is constructed by hierarchically enriching the conventional finite element approximation space

given by the P2-P1 Taylor-Hood element. The computational mesh consists of Nel = 2 × 752

elements and the time step size ∆t ∈ [10−5, 5 · 10−3] is computed by considering the CFL

conditions (4.24). The narrow band parameters for φi, i = 1, 2, are βI = 2, βO = 4, and γ = 6.

Results: Visualizations of the numerical results of the computed velocity for different points

in time are given in Figure 5.36. Therein, we can see that while both droplets rise similarly at

160 Chapter 5: Numerical results

(a) t = 0. (b) t = 1.

(c) t = 2.5. (d) t = 4.

Figure 5.36 Rising droplets: Results of the computed velocity for different time
steps. The droplets Γ1 and Γ2 are shown in white and yellow.

the beginning, cf. Figure 5.36(b), the droplet represented by Ω2 is subject to a larger buoyancy

force. Thus, it rises faster than the droplet represented by Ω1 and the resulting velocity field

impacts the shape and evolution of Ω1, cf. Figure 5.36(c). This effects increases during the

evolution of the droplets in time, cf. Figure 5.36(d).

Chapter 6

Summary and outlook

We conclude the thesis with a short summary and give an outlook about open questions and

future work.

6.1 Summary

Motivated by several multiphysics problems arising from the modeling of industrial applications

and shortcomings of conventional finite element methods in regards to their numerical simula-

tion, a hierarchical eXtended finite element method for the solution of multiphysics problems

with an arbitrary number of possible evolving and dissolving discontinuities has been presented.

Belonging to the class of unfitted methods, the presented approach is based of the following

ideas:

• The physical domain was embedded in a hold-all domain and decomposed in a geomet-

rically consistent way into subdomains by introduced hierarchical ordered level set func-

tions. The (active parts of the) zero levels of these functions represented the domain

boundaries. By design, the approach guarantees that no overlapping regions or voids can

arise.

• Based on the zero level sets, enriched approximation spaces have been defined using

the Heaviside function as the enrichment function. Due to the hierarchical order of the

discontinuities, the enriched quantities have been easily defined.

• For the imposition of boundary and interface conditions, Nitsche’s method has been used.

The weighted average operators similar to [49].

• For the discretization of time-dependent problems, Rothe’s method has been used and the

time derivative has been approximated using the implicit Euler scheme. Thereby, a series

of quasi-stationary problems was derived, where only a right-hand-side term depends on

the old time step. Problems with not enough regularity have been rescaled.

161

162 Chapter 6: Summary and outlook

While the derived method can be implemented as stand-alone library, it is especially suited to

be implemented into a framework that makes use of automated code generation. The advan-

tage of automated code generation is its convenience for user and that it allows for the rapid

implementation and solution of different kinds of problems. The open source project FEniCS of-

fers such a framework for conventional finite element method and, in addition, is widely used.

Therefore, the presented method has been implemented into a toolbox called miXFEM for the

FEniCS framework. As a result, it can be used for the automated solution of PDE problems

involving any kind and number of possible evolving discontinuities. In order for this to work,

miXFEM enhanced several core components of FEniCS:

• For the definition of discretized variational formulations in the high-level unified domain

language UFL, several concepts have been exploited which have already been implemented.

• To understand and reinterpret these expressions, a new form compiler called miXFFC has

been developed. This compiler generates the corresponding low-level C++ code for the

numerical solution of problems involving discontinuities.

• To make use of the generated code, a new library called miXDOLFIN has been implemented

which provides all methods related to the hierarchical eXtended finite element method.

• As the solution of multiphysics problems often requires additional methods, a full-featured

level set toolbox has been added to miXFEM. The toolbox provides maintaining methods

such as reinitialization via fast marching and volume correction methods and allows for

a efficient solution of the level set problem by restricting the problem to a narrow band

region.

The implemented framework miXFEM and its components have been validated using several

examples, partly with known analytical solution. Then the toolbox was used for the numerical

simulation of several applications motivating this thesis:

• Using the laser welding process for the production of hybrid joints as motivation, it has

been shown that the hierarchical eXtended finite element method enhances and simplifies

the modeling of the process. Moreover, it as shown that topology changes and multiple

junctions can be considered naturally.

• A reduced model of a laser-based thermal upsetting process has been considered. While

the evolution of the geometry was defined by an analytical model instead of considering

the completely coupled problem including the fluid dynamics and the capillary boundary,

it was demonstrated that these type of problems can be simulated with miXFEM.

• A highlight of the thesis is the application of the approach for the simulation of keyhole-

based laser welding processes, where the numerical results matched the experimental data

well.

Chapter 6: Summary and outlook 163

• While the presentation of the capabilities of the toolbox has been demonstrated in detail

for the aforementioned applications, it was also shown that the developed approach can

be used to solve problems from other research areas such as multiphase flow. Due to the

generality of the method, it can also be used to solve problems resulting from other fields

of research such as structural mechanics or fluid-structure interaction.

All in all, it has been shown that the hierarchical eXtended finite element method and its

implementation miXFEM considerably enhanced the modeling and simulation capabilities and,

by using automated code generation, provide a very flexible framework for the solution of

multiphysics problems in both 2D and 3D.

6.2 Outlook and future work

The presentation of the hierarchical eXtended finite element method in this thesis is primar-

ily focused on introducing the essential ideas of the method and its implementation into the

automated code generation framework. As a result, we neither included extensive analyses

of proposed method and the considered problems, nor did we present the technical details of

the toolbox in too much depth. Both are topics for upcoming publications. In addition to

this, there are several aspects concerning the hierarchical eXtended finite element method, its

implementation miXFEM, and the considered examples which can be addressed in future work:

• First of all, the implementation of higher order approximations of the interface should be

addressed. This is of particular interest when considering fluid dynamics, which are often

discretized using Taylor-Hood elements.

• For the discretization of time-dependent problems, we used Rothe’s method and rescaled

the considered problems to gain enough regularity, if necessary. Doing so restricts us to

first order convergence in the time. In contrast to this, space-time elements allow for

higher-order approximations and convergence rates [50]. Hence, it would be interesting

to combine our method with these methods.

• When considering more complex applications that may involve different scales, it is desir-

able to add adaptive mesh refinement algorithms to automatically adapt the mesh. While

implementing mesh refinement approaches merely based on the geometry and the zero

level sets, the idea of developing, for example., goal-orientated adaptivity algorithms to

automatically refine the mesh is very interesting.

• At the moment, miXFEM only makes use of shared memory parallelization, i.a., for the

assembling of forms. To significantly decrease the computational time, the implemented

methods have to be parallelized using distributed memory. In fact, the design of the

toolbox should allow for using the conventional domain decomposition approaches.

164 Chapter 6: Summary and outlook

• In regards to the linear algebra solvers, we currently use the standard solvers provided

by PETSc or similar libraries. We neither have performed studies with respect to the

efficiency nor did we test more sophisticated methods such as multigrid algorithms.

Furthermore, all examples and applications considered in this thesis have been used to demon-

strate the benefit and convenience of the hierarchical eXtended finite element method and, in

particular, its implementation into a framework which makes use of automated code genera-

tion. Therefore, most problems have been considered in terms of reduced models to illustrate

different features of miXFEM. While, we are currently enhancing the models of the applications

to also consider the fluid dynamics and capillary surfaces, which can be described using the

Laplace-Beltrami operator, future work could address the following aspects:

• In regards to the presented reduced models, we emphasized the capabilities of the method

and its implementation instead of focusing on each example in detail. As a result we

dropped i.a. a thorough analysis with methods from the functional analysis of each

problem. This is something we should catch on in the future.

• Moreover, the current solution strategy for couped models is to decouple the problem into

subproblems in an explicit way and solve them in succession. Instead of doing that, we

could also use a fix point scheme to iterate the subproblems against each other, similar

to [29, Chap. 9]. A comparison of the results would be interesting.

• Another important research topic is the solution of PDE constrained optimization prob-

lems. All mentioned applications depend on an appropriate choice of process parameters.

For the industrial application, the identification of optimal process windows are of great

interest.

• Also, the modeling and application of the method to consider more complex fluid dynamics

problems, such as multiphase flow with mass transport, could be addressed.

Last but not least, we want to mention that one of the few drawbacks of being engaged in

different research fields and multidisciplinary projects has been that there was not enough

time to follow all developments and updates of FEniCS. As a result, miXFEM is currently not

compatible with up-to-date versions of FEniCS but relies on an older code base making it

less attractive for users. To make the hierarchical eXtended finite element method and its

implementation in miXFEM more useful, the framework should be refactored and implemented

as toolbox which is compatible to the new API of FEniCS.

Appendix A

Keyhole model

The used keyhole model is adapted from the approach presented in [110]. Basically, it uses an

analytical model of the energy balance at the keyhole wall to approximate the keyhole shape

for a quasi-stationary situation. For given material and laser parameters, the heat conduction

is then approximated by a moving line source [111, 112] and the local inclination angle yielding

the keyhole geometry is computed using a point-by-point scheme that compares absorbed power

and conduction losses.

A.1 Laser model

In contrast to the previous applications considered in Sections 5.4 and 5.5, the laser beam is

now moved along the welding line. To take this into account, a Cartesian coordinate system

(x̃, y, z) is introduced, where x̃ is the welding direction and -z is the laser beam direction. After

substituting the x̃-coordinate by x = x̃− V⃗L(t− t0) for a constant velocity V⃗L in x-direction, we

end up with a quasi-stationary situation in a coordinate system related to the laser position. In

addition, we introduce the corresponding cylindrical coordinate system (r, ϕ, z), since we later

want to define the keyhole geometry using these coordinates. As before, we only consider a

Gaussian-like distributed intensity profile whose intensity maximum is given by

I0 =
2PL

r2f0π
(A.1)

with PL denoting the laser power and rf0 is the laser beam radius in focus height z0 so that a

Gaussian intensity profile is given by

IL(r, ϕ, z) = I0

Ç
rf0
rf(z)

å2

· exp
(
− 2r2

rf(z)2

)
(A.2)

165

166 Appendix: Keyhole model

where rf(z) is the current laser beam width

rf(z) = rf0

Ñ
1 +

Ç
z − z0
zRay

å2
é 1

2

(A.3)

that depends on the Rayleigh length zRay.

A.2 Heat conduction at the keyhole wall

To approximate the heat conduction at the keyhole wall, an analytic approach based on a

moving line source [111, 112] is used, whose power per unit depth P ′ and location xHS(z)

depend on z ∈ Ω. Due to the latter, we have a different coordinate system (r̂xHS(z), ϕ̂xHS(z), z)

for every z ∈ Ω with origin xHS(z). To simplify the notation in this section, we define (r̂, ϕ̂, z) :=

(r̂xHS(z), ϕ̂xHS(z), z) and keep in mind that all ·̂ coordinates depend on xHS(z) and, especially,

on z.

Using the moving line heat source model and the introduced notation, the temperature field

u(x̂, t) for a quasi-stationary situation with ∂tu = 0 in a semi-infinite work-piece is given by

u(r̂, ϕ̂, z) = ua +
P ′(r̂, ϕ̂, z)

2πλ
·K0(Pe

′r̂) exp
(
−Pe′r̂ cos(ϕ̂)

)
(A.4)

with K0(x̂) being the modified Bessel function of second kind and zeroth order, and Pe′ is the

modified Peclet number

Pe′ =
V⃗Lρc

2λ
=
V⃗L
2κ
, (A.5)

cf. [110, 112]. Since evaporating temperature uΓ1 has to be reached for all points (r̂, ϕ̂, z) at the

keyhole wall, we can transform (A.4) to get a formula to compute the value of the heat source

P ′(r̂, ϕ̂, z) which is then given by

P ′(r̂, ϕ̂, z) = (uΓ1 − ua) · 2πλ
1

K0(Pe′r̂)
exp

(
Pe′r̂ cos(ϕ̂)

)
. (A.6)

In general, thermal conduction can be described by Fourier’s law. Assuming that heat prop-

agates isotropic which means that the isothermal surfaces are concentric spheres, we neglect

heat flux in z-direction and consider the heat flow only in radial direction, i.e.

q̇(r̂, ϕ̂, z) = −λ∇u ≈ −λ∂r̂u. (A.7)

Substituting u with (A.4) and differentiating leads to

q̇(r̂, ϕ̂, z) = −λ∂u
∂r̂

=
P ′(r̂, ϕ̂, z)

2π exp
(
Pe′r̂ cos ϕ̂

)Pe′ [K0(Pe
′r̂) cos ϕ̂+K ′

1(Pe
′r̂)
]
, (A.8)

Appendix: Keyhole model 167

z

x

y

xr

xf

xs

Figure A.1 Keyhole half-geometry with the lines defining its front-back form (long
dashes) and its side form (short dashes).

with K1(x̂) as modified Bessel function of second kind and first order. With (A.6) as value for

P ′(r̂, ϕ̂, z) to reach evaporating temperature at the keyhole wall, the heat flow at the keyhole

wall is

qv(r̂, ϕ̂, z) = (uΓ1 − ua)λPe
′
Ç
cos ϕ̂+

K1(Pe
′r̂)

K0(Pe′r̂)

å
. (A.9)

Remark A.1. To further simplify the notation, we introduce the transformation function ψ(x) :=

ψ(x;xHS(z)) = ψ(r, ϕ, z;xHS(z)) which converts coordinates (r, ϕ, z) in the standard coordinate

system to coordinates (r̂, ϕ̂, z) in the heat source’s coordinate system with origin in xHS(z),

z ∈ Ω.

A.3 Location of the heat source

As pointed out before, equation (A.9) is derived assuming that for every z ∈ Ω there is a moving

line source with energy P ′ by which evaporating temperature can be obtained at the keyhole

wall in this z-layer. It is important to note that the location of the heat source xHS(z) depends

on z ∈ Ω and, especially, does not align with the (fixed) laser position.

Given the coordinates xf
i = (xfi, 0, zi) = (rfi , ϕ

f
i, zi) and xr

i = (xri , 0, zi) = (rri , ϕ
r
i , zi) in the laser

coordinate system, we can approximate the position xHS
i using an explicit scheme that is based

on the distance between front and rear keyhole wall at layer zi. These coordinates correspond

to the lines depicted in the front, back and side of the keyhole geometry from Figure A.1. More

precisely, we have to compute xHS
i = (xHS

i , 0, zi) = (rHS
i , ϕHS

i , zi) s.t. the following equation

holds:

0 = uΓ1 − uΓ1 = u(x̂f
i)− u(x̂r

i) = u(xf
i − xHS

i)− u(xr
i − xHS

i) (A.10)

which, with (A.4), can be simplified to

0 = K0(Pe
′(rfi − rHS

i+1) exp(−Pe′(rfi − rHS
i)) −K0(Pe

′(rri − rHS
i)) exp(Pe′(rri − rHS

i)). (A.11)

168 Appendix: Keyhole model

The function in equation (A.11) has a singularity only at the origin and can be solved to find

rHS
i+1. This can be numerically well approximated by a bisection method and, once the heat

source’s location is found, we can define the transformation function ψ(x) and evaluate (A.9)

not in (r, ϕ, z), but in (r̂, ϕ̂, z) for the next z-layer.

A.4 Computation scheme for the keyhole geometry

For computing the keyhole geometry, the local heat losses at the keyhole wall are compared to

the locally absorbed intensity yielding the relation

tan
(
θ(r, ϕ, z)

)
=
qv(ψ(r, ϕ, z))

αfrI(r, ϕ, z)
=
qv(ψ(r, ϕ, z))

Ia(r, ϕ, z)
=
qv(r̂, ϕ̂, z))

Ia(r, ϕ, z)
(A.12)

for the local inclination angle θ, with αfr denoting the Fresnel absorption. Please note that

we neglect the dependency of the absorption rate on the angle of incidence but use a constant

(mean) Fresnel absorption coefficient.

While (A.12) is an implicit equation and, in principle, allows for a point-wise computation of

the entire keyhole geometry, we only use it to determine the front, rear and side wall. Moreover,

we consider the equation explicitly by approximating the values on the right-hand-side using

the precisely computed value of θ. With this, the explicit point-by-point scheme illustrated in

Figure A.2 is as follows:

1. Given the keyhole wall points xf
i, x

r
i and xs

i at the keyhole front, rear and side wall, we

first compute the location of the heat source xHS
i by solving (A.10).

2. With this, we evaluate qv(ψ(xi)) and I(xi) to compute θ(xi) via relation (A.12) and

determine the next keyhole wall points at the front and rear, xf
i+1, x

r
i+1 (in the x-z-plane

of the laser’s coordinate system) by

ri+1 = ri −∆z tan(θ(xi)),

ϕi+1 = ϕi =

⎧⎪⎪⎨⎪⎪⎩
0, at the front wall,

π, at the rear wall,

zi+1 = zi −∆z,

resp.

xi+1 = xi −∆z tan(θ(xi)),

yi+1 = yi = 0,

zi+1 = zi −∆z.

(A.13)

3. Finally, the next point at the keyhole side wall, which is symmetrical to the x-z-plane, is

computed by

xi+1 = xHS
i ,

yi+1 = yi −∆z tan(θ(xi)),

zi+1 = zi −∆z.

(A.14)

Appendix: Keyhole model 169

z

x

xf
i zi

zi+1
xr
i+1

xr
i

xf
i+1

θfθr

z

y

xs
i zi

zi+1xs
i+1

θ

Figure A.2 Discrete iteration to compute the Keyhole shape. Left: Side view for
computing the front and rear keyhole wall. Right: Front view for computing the side

view.

here, it is important to note that the x-coordinate of the side wall always aligns with the

x-coordinate of the heat source.

The full keyhole geometry is then approximated by defining ellipses for every zi, using the

front and rear wall points as semi-major axes and the side wall points as semi-minor axes in a

secondary step. We will elaborate this approach further in Section A.6.

A.5 Multiple reflections

The existence of multi reflections is an essential phenomenon of the laser welding process, as

it is responsible for a large amount of energy absorbed into the material pieces. For metallic

components, it is known that these reflections can take an absorption factor of around 30% and

increase it to values around 80% of the total laser beam energy.

In our formulations, we denoted the intensity in (A.12) by I rather than IL because we have to

consider that only a portion of the incident laser beam’s intensity IL gets directly absorbed into

the material. The remaining intensity (1 − αfr)IL is reflected and (partly) absorbed multiple

times within the keyhole causing an overall absorption of up to 80%.

Our computation of the keyhole geometry uses the front, rear and side keyhole walls by a

(downwards orientated) point-by-point scheme. Due to this descending computation scheme,

we only consider the influence of multi reflections in the negative z-direction, meaning that

the impact of a reflection on a previously computed point at the keyhole wall is neglected.

Therefore, we can assume that there is no incoming reflection that has to be considered in the

computation method for the first m > 0 points.

Our approach to consider multi reflections within the computation method for a given point

xi = (ri, ϕi, zi), with ϕi ∈ {0, π2 , π} at a keyhole wall, i ≤ m, consists on performing the

following steps:

170 Appendix: Keyhole model

z

y

∆z
γ

θ ∆z

θ

δ

L
a
se

r

Reflect
ion

Figure A.3 Scheme for computing the reflection angle for reflected rays.

1. Compute the inclination angle θ(xi+1) = θ(ri, ϕi, zi) by taking (only) IL(ri, ϕi, zi) into

account and then define xi+1 according to the scheme presented in Section A.4.

2. Determine the reflected intensity Ir(xi) = (1 − αfr)IL(xi) as well as the reflection angle

δ(xi) =
π
2 − 2θ(xi) relative to the horizontal axis, cf. Figure A.3.

3. Introduce a linear function fi(r, z) = zi − tan(δi)(r + ri) to compute the point of impact

of the reflected intensity at the keyhole wall.

For a point xj with j > m the previously described method is adapted to consider multi

reflections starting with the following steps:

1. Compute a tentative inclination angle θ̃(xj+1) = θ̃(rj , ϕj , zj) by taking (only) IL(rj , ϕj , zj)

into account and then define a tentative point x̃j+1.

2. Evaluate all functions fi, i = 0, . . . , j − 1, at (r̃j , zj) to find the closest points of impact

(ri0 , zi0) and (ri1 , zi1) forming an interval which contains (r̃j , zj).

3. Compute the reflected intensity Ir(r̃j , zj) (acting in −z-direction) by interpolating the

“cosinus parts” of the corresponding intensities Ii0 and Ii1

4. Define the total intensity at (r̃j , zj) by I(rj , ϕj , zj) = IL(rj , ϕj , zj) + Ir(r̃j , ϕj , zj) and

continue with step (1) of the previous scheme using this intensity.

Note that the functions fi are independent of the angle ϕi since a reflection occurs always in

normal direction. In our case that means that if an intensity is reflected at the front keyhole

wall, it has only an impact of at the rear keyhole wall and vice versa. This is also true for

the keyhole side walls. As we only consider these four points, we can model multi reflections

without implementing a numerically expensive ray tracing algorithm.

Appendix: Keyhole model 171

A.6 Level set representation of the keyhole geometry

The discrete points at the front, rear and side keyhole wall computed by (A.12) can be used to

construct a level set function whose zero level set represents the whole keyhole geometry. Let

xf
i = (xfi, 0, zi), x

r
i = (xri , 0, zi) and xs1

i = (xsi , y
s
i , zi) = (xHS

i , ysi , zi) resp. xs2
i = (xsi ,−ysi , zi) =

(xHS
i ,−ysi , zi), i = 1, . . . ,M , be the coordinates of the points at the front, rear and side keyhole

wall. For every depth layer zi, we approximate the keyhole shape by two half-ellipses using

the front and rear keyhole wall points as semi-major axes and the side keyhole wall points as

semi-minor axes, see Figure A.4.

x

y

(xHS, 0)(xr, 0) = (x̂r − xHS, 0) (xf , 0) = (x̂f − xHS, 0)

(xs, ys) = (xHS, ys)

(xs,−ys) = (xHS,−ys)

Figure A.4 Keyhole wall approximated at a fixed depth and with a heat source
location (xHS, 0) in both coordinate systems.

By doing this, the half-ellipse connecting xf
i, x

s1
i and xs2

i is given by

y2 = (ysi)
2 − (ysi)

2

(xfi)
2
(x− xsi)

2. (A.15)

and the half-ellipse connecting xr
i , x

s1
i and xs2

i is given by

y2 = (ysi)
2 − (ysi)

2

(xri)
2
(x− xsi)

2. (A.16)

Based on this equations, we introduce the level set functions

φ1|zi (x) = φ(x, y, zi)

=

⎧⎪⎪⎨⎪⎪⎩
…
(y2 − (ysi)

2 − (ysi)
2

(xfi)
2 (x− xsi)

2), for x ≥ xHS…
(y2 − (ysi)

2 − (ysi)
2

(xri)
2 (x− xsi)

2), for x < xHS
,

(A.17)

which are signed distance functions whose zero level sets Γ1|zi represents the (2D) keyhole wall

for each depth layer zi, i = 1, . . . ,M in the x-y plane. In the vertical direction, the different

ellipses (or equivalently the level set functions) are linearly interpolated between the z-layers

172 Appendix: Keyhole model

to obtain a continuous function φ1 whose zero level set Γ1 defines the 3D keyhole geometry.

Thereby, φ1 has to be extended for z < zM in an arbitrarily but continuous way. For problem

(5.88), the keyhole geometry is considered as constant and moves along the welding line at the

given welding speed V⃗L. Hence, our sharp interface between keyhole and molten area is given

by

Γ1(t) = {x ∈ Ω :
(
x− (t− t0)V⃗L

)
∈ Γ1(t0), t ∈ [t0, tf]}. (A.18)

Remark A.2. While in a first step, the discrete keyhole Γh is computed using a very small

step size ∆z for a high precision approximation of the keyhole shape and depth, the level set

function φ1 and the corresponding zero level set Γ1 are constructed using only a set of keyhole

wall coordinates which contains only about 10% of the previously computed points including

the first and the last one. This does not represent any remarkable reduction in precision, as the

interfaces are in the end linearly interpolated during the XFEM enrichment of elements.

Bibliography

[1] A. Logg, K.-A. Mardal, and G. N. Wells, editors. Automated solution of differential

equations by the finite element method, volume 84 of Lecture Notes in Computational

Science and Engineering. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[2] M. Jahn and T. Klock. A level set toolbox including reinitialization and mass correction

algorithms for FEniCS. Technical Report 16-01, ZeTeM, Bremen, 2016.

[3] Lamineries MATTHEY SA. Stahl 1.4301. Technical Report 2013/01, Lamineries

MATTHEY SA, Lamineries MATTHEY SA, CH-2520 La Neuveville, 2013.

[4] W.F. Gale and T.C. Totemeier. Smithells Metals Reference Book. Elsevier Science, 2003.

ISBN 9780080480961.

[5] H. R. Shanks, A. H. Klein, and G. C. Danielson. Thermal properties of armco iron. 38:

2885 – 2892, 07 1967.

[6] F. Vollertsen, D. Biermann, H.N. Hansen, I.S. Jawahir, and K. Kuzman. Size effects in

manufacturing of metallic components. CIRP Annals - Manufacturing Technology, 58(2):

566 – 587, 2009. ISSN 0007-8506. doi: 10.1016/j.cirp.2009.09.002.

[7] F. Vollertsen and R. Walther. Energy balance in laser based free form heading. CIRP

Annals, 57:291–294, 2008.

[8] A. Stephen and F. Vollertsen. Influence of the rod diameter on the upset ratio in laser-

based free form heading. Steel Research Int., Special Edition: 10th Int. Conf. on Tech-

nology of Plasticity (ICTP), pages 220–223, 2011.

[9] E. Bänsch, J. Paul, and A. Schmidt. An ALE finite element method for a coupled Stefan

problem and Navier–Stokes equations with free capillary surface. International Journal

for Numerical Methods in Fluids, 71(10):1282–1296, 2013. ISSN 1097-0363. doi: 10.1002/

fld.3711.

[10] M. Jahn, A. Luttmann, and A. Schmidt. A FEM simulation for solid-liquid-solid phase

transitions during the production of micro-components. In Proceedings of 11th Interna-

tional Scientific Conference MMA - Advanced Production Technologies, 2012.

173

174 Bibliography

[11] M. Jahn, H. Brüning, A. Schmidt, and F. Vollertsen. Energy dissipation in laser-based

free form heading: a numerical approach. Production Engineering, 8(1-2):51–61, 2014.

ISSN 0944-6524. doi: 10.1007/s11740-013-0509-8.

[12] H. Brüning, M. Teepe, and F. Vollertsen. Surface roughness and size effect in dendrite

arm spacing at preforms of aisi 304 (1.4301) generated by laser rod end melting. Procedia

Engineering, 81(0):1589 – 1594, 2014. ISSN 1877-7058. doi: http://dx.doi.org/10.1016/

j.proeng.2014.10.195. 11th International Conference on Technology of Plasticity, ICTP

2014, 19-24 October 2014, Nagoya Congress Center, Nagoya, Japan.

[13] A. Luttmann. Modellierung und Simulation von Prozessen mit fest-flüssig Phasenübergang

und freiem Kapillarrand. Dissertation, Universität Bremen, 2018.

[14] M. Jahn A. Barr A. Schmidt A. von Hehl F. Vollertsen M. Kowalschuk, A. Luttmann.

Challenges in simulation of welded hybrid joints. In F. Grün W. Eichlseder, editor,

Proceedings of the 3rd Fatigue Symposium Leoben, pages 85–112, 2012.

[15] L. I. Rubinštĕin. The Stefan Problem, volume 27 of Translations of Mathematical Mono-

graphs. American Mathematical Society, Rhode Island, 1971.

[16] A. Visintin. Models of phase transition. Birkhäuser Boston Inc., 1996.

[17] E. Bänsch. Finite element discretization of the Navier-Stokes equations with a free cap-

illary surface. Numerische Mathematik, 88(2):203–235, 2001.

[18] C. Grossmann, H.G. Roos, and M. Stynes. Numerical Treatment of Partial Differential

Equations. Universitext. Springer Berlin Heidelberg, 2007. ISBN 9783540715849.

[19] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Ap-

plied Mathematics. Cambridge University Press, 2002. doi: 10.1017/CBO9780511791253.

[20] M. Jahn, A. Luttmann, A. Schmidt, and J. Paul. Finite element methods for problems

with solid-liquid-solid phase transitions and free melt surface. PAMM, 12(1):403–404,

2012. ISSN 1617-7061. doi: 10.1002/pamm.201210190.

[21] M. Jahn and A. Schmidt. Finite element simulation of a material accumulation process

including phase transitions and a capillary surface. Technical Report 12-03, ZeTeM,

Bremen, 2012.

[22] M. Jahn, A. Luttmann, and A. Schmidt. Finite element simulation for material accumu-

lation and welding processes including a free melt surface. PAMM, 13(1):235–236, 2013.

ISSN 1617-7061. doi: 10.1002/pamm.201310113.

[23] L. Tan and N. Zabaras. A level set simulation of dendritic solidification of multi-

component alloys. Journal of Computational Physics, 221(1):9 – 40, 2007. ISSN 0021-9991.

doi: https://doi.org/10.1016/j.jcp.2006.06.003.

Bibliography 175

[24] B. Schott. Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow

Problems. Dissertation, TU München, München, 2017.

[25] S. Zlotnik and P. Dı́ez. Hierarchical x-fem for n-phase flow (n¿2). Computer Methods

in Applied Mechanics and Engineering, 198(30):2329 – 2338, 2009. ISSN 0045-7825. doi:

https://doi.org/10.1016/j.cma.2009.02.025.

[26] T.-P. Fries and T. Belytschko. The extended/generalized finite element method: An

overview of the method and its applications. International Journal for Numerical Methods

in Engineering, 84(3):253–304, 2010. ISSN 1097-0207. doi: 10.1002/nme.2914.

[27] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwen-

dung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus

dem Mathematischen Seminar der Universität Hamburg, 36(1):9–15, 1971. ISSN 1865-

8784. doi: 10.1007/BF02995904.

[28] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algo-

rithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12–49, November

1988. ISSN 0021-9991. doi: 10.1016/0021-9991(88)90002-2.

[29] S. Gross and A. Reusken. Numerical Methods for two-phase Incompressible Flows.

Springer Series in Computational Mathematics. Springer, 2011. ISBN 9783642196867.

[30] E. Oñate and M. Manzán. A general procedure for deriving stabilized space–time fi-

nite element methods for advective–diffusive problems. International Journal for Nu-

merical Methods in Fluids, 31(1):203–221, 1999. ISSN 1097-0363. doi: 10.1002/(SICI)

1097-0363(19990915)31:1⟨203::AID-FLD964⟩3.0.CO;2-Z.

[31] W.E. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equa-

tions. Academic Press, 1991. ISBN 9780126241303.

[32] W.E. Schiesser. Computational Mathematics in Engineering and Applied Science: ODEs,

DAEs, and PDEs. Symbolic & Numeric Computation. Taylor & Francis, 1993. ISBN

9780849373732.

[33] T. E. Tezduyar. Interface-tracking and interface-capturing techniques for finite ele-

ment computation of moving boundaries and interfaces. Computer Methods in Ap-

plied Mechanics and Engineering, 195(23):2983 – 3000, 2006. ISSN 0045-7825. doi:

https://doi.org/10.1016/j.cma.2004.09.018. Incompressible CFD.

[34] C.W Hirt, A.A Amsden, and J.L Cook. An arbitrary lagrangian-eulerian computing

method for all flow speeds. Journal of Computational Physics, 14(3):227 – 253, 1974.

ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(74)90051-5.

176 Bibliography

[35] R. H. Nochetto, K. G. Siebert, and A. Veeser. Theory of adaptive finite element methods:

An introduction. In R. DeVore and A. Kunoth, editors, Multiscale, Nonlinear and Adap-

tive Approximation, pages 409–542, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[36] I. Babuška. The finite element method with penalty. Mathematics of Computation, 27

(122):221–228, 1973. ISSN 00255718, 10886842.

[37] I. Babuška and M. Zlámal. Nonconforming elements in the finite element method with

penalty. SIAM Journal on Numerical Analysis, 10(5):863–875, 1973. doi: 10.1137/

0710071.

[38] J. W. Barrett and C. M. Elliott. Finite element approximation of the dirichlet problem

using the boundary penalty method. Numerische Mathematik, 49(4):343–366, Jul 1986.

[39] J. M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory

and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4):

289–314, 12 1996. ISSN 0374-2830.

[40] I. Babuška and J. M. Melenk. The partition of unity method. International Journal for

Numerical Methods in Engineering, 40(4):727–758, 1997. ISSN 1097-0207. doi: 10.1002/

(SICI)1097-0207(19970228)40:4⟨727::AID-NME86⟩3.0.CO;2-N.

[41] T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method: an

example of its implementation and illustration of its performance. International Journal

for Numerical Methods in Engineering, 47(8):1401–1417, 2000. ISSN 1097-0207. doi:

10.1002/(SICI)1097-0207(20000320)47:8⟨1401::AID-NME835⟩3.0.CO;2-8.

[42] C. A. Duarte, I. Babuška, and J. T. Oden. Generalized finite element methods for three-

dimensional structural mechanics problems. Computers & Structures, 77(2):215 – 232,

2000. ISSN 0045-7949.

[43] J. E. Dolbow. An extended finite element method with discontinuous enrichment for

applied mechanics. Northwestern University, 1999.

[44] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without

remeshing. International Journal for Numerical Methods in Engineering, 46(1):131–150,

1999. ISSN 1097-0207. doi: 10.1002/(SICI)1097-0207(19990910)46:1⟨131::AID-NME726⟩
3.0.CO;2-J.

[45] T. Belytschko, R. Gracie, and G. Ventura. A review of extended/generalized finite ele-

ment methods for material modeling. Modelling and Simulation in Materials Science and

Engineering, 17(4):043001, 2009.

[46] J. Chessa, P. Smolinski, and T. Belytschko. The extended finite element method (XFEM)

for solidification problems. International Journal for Numerical Methods in Engineering,

53(8):1959–1977, 2002. ISSN 1097-0207. doi: 10.1002/nme.386.

Bibliography 177

[47] R. Merle and J. Dolbow. Solving thermal and phase change problems with the extended

finite element method. Computational Mechanics, 28(5):339–350, 2002. ISSN 1432-0924.

doi: 10.1007/s00466-002-0298-y.

[48] Y. Abdelaziz and A. Hamouine. A survey of the extended finite element. Computers &

Structures, 86(11):1141 – 1151, 2008. ISSN 0045-7949. doi: https://doi.org/10.1016/j.

compstruc.2007.11.001.

[49] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method,

for elliptic interface problems. Computer Methods in Applied Mechanics and Engineer-

ing, 191(47–48):5537 – 5552, 2002. ISSN 0045-7825. doi: http://dx.doi.org/10.1016/

S0045-7825(02)00524-8.

[50] C. Lehrenfeld. On a Space-Time Extended Finite Element Method for the Solution of a

Class of Two-Phase Mass Transport Problems. Dissertation, RWTH Aachen, February

2015.

[51] N. Moes, M. Cloirec, P. Cartraud, and J.-F. Remacle. A computational approach to

handle complex microstructure geometries. Computer Methods in Applied Mechanics and

Engineering, 192:3163–3177, 07 2003.

[52] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. Cutfem: Discretizing

geometry and partial differential equations. International Journal for Numerical Methods

in Engineering, 104(7):472–501, 2015. ISSN 1097-0207. doi: 10.1002/nme.4823.

[53] K. W. Cheng and T.-P. Fries. Higher-order XFEM for curved strong and weak discontinu-

ities. International Journal for Numerical Methods in Engineering, 82(5):564–590, 2010.

ISSN 1097-0207. doi: 10.1002/nme.2768.

[54] M. Nikbakht. Automated solution of partial differential equations with discontinuities

using the Partition of Unity method. PhD thesis, TU Delft, 2012.

[55] N. Moës, E. Béchet, and M. Tourbier. Imposing dirichlet boundary conditions in the

extended finite element method. International Journal for Numerical Methods in Engi-

neering, 67(12):1641–1669, 2006. ISSN 1097-0207. doi: 10.1002/nme.1675.

[56] J. E. Dolbow and H. Ji. On strategies for enforcing interfacial constraints and evaluating

jump conditions with the extended finite element method. International Journal for

Numerical Methods in Engineering, 61(14):2508–2535, 2004.

[57] I. Babuška. The finite element method with lagrangian multipliers. Numerische Mathe-

matik, 20(3):179–192, Jun 1973. ISSN 0945-3245. doi: 10.1007/BF01436561.

[58] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems aris-

ing from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis

- Modélisation Mathématique et Analyse Numérique, 8(R2):129–151, 1974.

178 Bibliography

[59] D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elas-

tizitätstheorie. Masterclass. Springer Berlin Heidelberg, 2013. ISBN 9783662072332.

[60] E. Burman. Ghost penalty. Comptes Rendus Mathematique, 348(21):1217 – 1220, 2010.

ISSN 1631-073X. doi: https://doi.org/10.1016/j.crma.2010.10.006.

[61] R. Bank and R. Santos. Analysis of some moving space-time finite element methods.

SIAM Journal on Numerical Analysis, 30(1):1–18, 1993. doi: 10.1137/0730001.

[62] T.-P. Fries and A. Zilian. On time integration in the XFEM. International Journal for

Numerical Methods in Engineering, 79(1):69–93, 2009. ISSN 1097-0207. doi: 10.1002/

nme.2558.

[63] R.A. Adams and J.J.F. Fournier. Sobolev Spaces. Pure and Applied Mathematics. Elsevier

Science, 2003. ISBN 9780080541297.

[64] B. Merriman, J. K. Bence, and S. J. Osher. Motion of multiple junctions: A level set

approach. Journal of Computational Physics, 112(2):334 – 363, 1994. ISSN 0021-9991.

doi: https://doi.org/10.1006/jcph.1994.1105.

[65] H-K Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to

multiphase motion. Journal of Computational Physics, 127(1):179 – 195, 1996. ISSN

0021-9991. doi: https://doi.org/10.1006/jcph.1996.0167.

[66] S. J. Ruuth. A diffusion-generated approach to multiphase motion. Journal of Compu-

tational Physics, 145(1):166 – 192, 1998. ISSN 0021-9991. doi: https://doi.org/10.1006/

jcph.1998.6028.

[67] D. P. Starinshak, S. Karni, and P. L. Roe. A new level set model for multimaterial

flows. Journal of Computational Physics, 262:1 – 16, 2014. ISSN 0021-9991. doi: https:

//doi.org/10.1016/j.jcp.2013.12.036.

[68] T.P. Fries and D. Schöllhammer. Higher-order meshing of implicit geometries, part ii:

Approximations on manifolds. Computer Methods in Applied Mechanics and Engineering,

326:270 – 297, 2017. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2017.07.037.

[69] P. Hansbo. Nitsche’s method for interface problems in computa-tional mechanics. GAMM-

Mitteilungen, 28(2):183–206, 2005. ISSN 1522-2608. doi: 10.1002/gamm.201490018.

[70] E. Burman. A penalty-free nonsymmetric nitsche-type method for the weak imposition

of boundary conditions. SIAM Journal on Numerical Analysis, 50(4):1959–1981, 2012.

doi: 10.1137/10081784X.

[71] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements:

Ii. a stabilized nitsche method. Applied Numerical Mathematics, 62(4):328 – 341, 2012.

ISSN 0168-9274. doi: https://doi.org/10.1016/j.apnum.2011.01.008. Third Chilean Work-

shop on Numerical Analysis of Partial Differential Equations (WONAPDE 2010).

Bibliography 179

[72] A. N. Brooks and T. J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for

convection dominated flows with particular emphasis on the incompressible Navier-Stokes

equation. Computer Methods in Applied Mechanics and Engineering, 32(1):199 – 259,

1982. ISSN 0045-7825. doi: https://doi.org/10.1016/0045-7825(82)90071-8.

[73] F. Hecht. New development in FreeFem++. J. Numer. Math., 20(3-4):251–265, 2012.

ISSN 1570-2820.

[74] COMSOL. Multiphysics Reference Guide for COMSOL 5.3, 2017.

[75] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified form

language: A domain-specific language for weak formulations of partial differential equa-

tions. ACM Trans. Math. Softw., 40(2):9:1–9:37, March 2014. ISSN 0098-3500. doi:

10.1145/2566630.

[76] M. S. Alnæs. UFL: a finite element form language. In A. Logg, K.-A. Mardal, and G. N.

Wells, editors, Automated solution of differential equations by the finite element method,

volume 84 of Lecture Notes in Computational Science and Engineering, chapter 17, pages

299–334. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[77] R. C. Kirby and A. Logg. A compiler for variational forms. ACM Trans. Math. Softw.,

32(3):417–444, September 2006. ISSN 0098-3500. doi: 10.1145/1163641.1163644.

[78] K. B. Ølgaard and G. N. Wells. Optimizations for quadrature representations of finite

element tensors through automated code generation. ACM Trans. Math. Softw., 37(1):

8:1–8:23, January 2010. ISSN 0098-3500. doi: 10.1145/1644001.1644009.

[79] A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. FFC: the FEniCS form com-

piler. In A. Logg, K.-A. Mardal, and G. N. Wells, editors, Automated solution of dif-

ferential equations by the finite element method, volume 84 of Lecture Notes in Com-

putational Science and Engineering, chapter 11, pages 223–234. Springer, 2012. doi:

10.1007/978-3-642-23099-8.

[80] R. C. Kirby. Algorithm 839: Fiat, a new paradigm for computing finite element basis

functions. ACM Trans. Math. Softw., 30(4):502–516, December 2004. ISSN 0098-3500.

doi: 10.1145/1039813.1039820.

[81] R. C. Kirby. FIAT: numerical construction of finite element basis functions. In A. Logg,

K.-A. Mardal, and G. N. Wells, editors, Automated solution of differential equations by

the finite element method, volume 84 of Lecture Notes in Computational Science and

Engineering, chapter 13, pages 243–252. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[82] M. S. Alnæs, A. Logg, K.-A. Mardal, O. Skavhaug, and H. P. Langtangen. Unified

framework for finite element assembly. International Journal of Computational Science

and Engineering, 4(4):231–244, 2009. doi: 10.1504/2009.029160.

180 Bibliography

[83] M. S. Alnæs, A. Logg, and K.-A. Mardal. UFC: a finite element code generation in-

terface. In A. Logg, K.-A. Mardal, and G. N. Wells, editors, Automated solution of

differential equations by the finite element method, volume 84 of Lecture Notes in Com-

putational Science and Engineering, chapter 16, pages 279–298. Springer, 2012. doi:

10.1007/978-3-642-23099-8.

[84] A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM Trans

Math Software, 37(2):20:1–20:28, 2010.

[85] A. Logg, G. N. Wells, and J. Hake. DOLFIN: a C++/Python finite element library.

In A. Logg, K.-A. Mardal, and G. N. Wells, editors, Automated solution of differ-

ential equations by the finite element method, volume 84 of Lecture Notes in Com-

putational Science and Engineering, chapter 10, pages 171–222. Springer, 2012. doi:

10.1007/978-3-642-23099-8.

[86] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, K. Rupp,

B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical

Report ANL-95/11 - Revision 3.8, Argonne National Laboratory, 2017.

[87] W. Schroeder, Ken M., and B. Lorensen. Visualization Toolkit: An Object-Oriented

Approach to 3D Graphics, 4th Edition. Kitware, 4th edition, December 2006. ISBN

193093419X.

[88] M. Nikbakht and G. N. Wells. Automated modelling of evolving discontinuities. Algo-

rithms, 2:1008–1030, 2009. doi: 10.3390/a2031008.

[89] M. Nikbakht and G. N.Wells. Modeling evolving discontinuities. In A. Logg, K.-A.

Mardal, and G. N. Wells, editors, Automated solution of differential equations by the finite

element method, volume 84 of Lecture Notes in Computational Science and Engineering,

chapter 30, pages 573–586. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[90] U. Ayachit. The ParaView Guide: A Parallel Visualization Application. Kitware, Inc.,

USA, 2015. ISBN 1930934300, 9781930934306.

[91] T. Williams, C. Kelley, and many others. Gnuplot 5.0: An interactive plotting program.

http://www.gnuplot.info, 2015.

[92] C. M. Elliot. On the finite element approximation of an elliptic variational inequality aris-

ing from an implicit time discretization of the Stefan problem. IMA Journal of Numerical

analysis, 1:115–125, 1981.

[93] T. Klock. Numerical solution of the two-phase Stefan problem with XFEM and level set

methods. Master thesis, Universität Bremen, 2016.

Bibliography 181

[94] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE-based fast local level

set method. Journal of Computational Physics, 155:410–438, November 1999. doi: 10.

1006/jcph.1999.6345.

[95] R. F. Ausas, E. A. Dari, and G. C. Buscaglia. A geometric mass-preserving redistancing

scheme for the level set function. International Journal for Numerical Methods in Fluids,

65(8):989–1010, 2011. ISSN 1097-0363. doi: 10.1002/fld.2227.

[96] H.G. Roos, M. Stynes, and L. Tobiska. Robust numerical methods for singularly perturbed

differential equations: Convection-diffusion-reaction and flow problems. Springer Series

in Computational Mathematics. Springer, 2008. ISBN 9783540344674.

[97] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for

convection dominated flows with particular emphasis on the incompressible Navier-Stokes

equations. Comput. Methods Appl. Mech. Eng., pages 199–259, 1990. ISSN 0045-7825.

[98] J. A. Sethian. A fast marching level set method for monotonically advancing fronts.

Proceedings of the National Academy of Sciences, 93(4):1591–1595, 1996.

[99] A. Reusken and E. Loch. On the Accuracy of the Level Set SUPG Method for Approxi-

mating Interfaces. Bericht. Inst. für Geometrie und Praktische Mathematik, 2011.

[100] N. Anderson and Å. Björck. A new high order method of regula falsi type for computing

a root of an equation. BIT Numerical Mathematics, 13(3):253–264, 1973.

[101] M. Bernauer. Motion planning for the two-phase Stefan problem in level set formulation.

Dissertation, 2010.

[102] M. Jahn and A. Luttmann. Solving the Stefan problem with prescribed interface using

an XFEM toolbox for FEniCS. Technical Report 16-03, ZeTeM, Bremen, 2016.

[103] M. Jahn and T. Klock. Numerical solution of the Stefan problem in level set formulation

with the eXtended finite element method in FEniCS. Technical Report 17-01, ZeTeM,

Bremen, 2017.

[104] M. Jahn, T. Klock, and A. Luttmann. Levelset methods (and XFEM) in FEniCS, 2015.

FEniCS’15 Workshop at Imperial College London.

[105] M. Jahn, A. Luttmann, and T. Klock. An XFEM toolbox for FEniCS, 2016. FEniCS’16

Workshop at Simula Research Laboratory.

[106] M. Jahn. miXFEM - an XFEM toolbox to tackle multiphysics problems with FEniCS,

2018. FEniCS’18 Workshop at Oxford University.

[107] G. Dziuk. Theorie und Numerik partieller Differentialgleichungen. De-Gruyter-Studium.

De Gruyter, 2010. ISBN 9783110148435.

182 Bibliography

[108] M. Jahn, A. Schmidt, and E. Bänsch. 3D finite element simulation of a material accumu-

lation process including phase transistions and a capillary surface, 01.01.2012.

[109] K. Chongbunwatana. Simulation of vapour keyhole and weld pool dynamics during laser

beam welding. Production Engineering, 8(4):499–511, Aug 2014. ISSN 1863-7353. doi:

10.1007/s11740-014-0555-x.

[110] A. Kaplan. A model of deep penetration laser welding based on calculation of the keyhole

profile. Journal of Physics D Applied Physics, 27:1805–1814, September 1994. doi: 10.

1088/0022-3727/27/9/002.

[111] D. Rosenthal. The theory of moving source of heat and its application to metal treatments.

ASME Transactions, 48:848–866, 1946.

[112] H.S. Carslaw and J.C. Jaeger. Conduction of heat in solids. Oxford science publications.

Clarendon Press, 1959.

[113] J. Montalvo-Urquizo, Z. Akbay, and A. Schmidt. Adaptive finite element models applied

to the laser welding problem. Computational Materials Science, 46(1):245–254, 2009.

ISSN 0927-0256. doi: http://dx.doi.org/10.1016/j.commatsci.2009.02.037.

[114] S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska.

Quantitative benchmark computations of two-dimensional bubble dynamics. International

Journal for Numerical Methods in Fluids, 60(11):1259–1288. doi: 10.1002/fld.1934.

[115] M. Griebel S. Groß M. Klitz A. Rüttgers J. Adelsberger, P. Esser. 3d incompressible two-

phase flow benchmark computations for rising droplets. Technical Report 393, Institut

für Geometrie und Praktische Mathematik, RWTH Aachen, Aachen, 2014.

[116] R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis. Studies in math-

ematics and its applications. North-Holland, 1979. ISBN 9780444875594.

[117] E. Bänsch. Numerical methods for the instationary Navier-Stokes equations with a free

capillary surface. Habilitationsschrift, Universität Freiburg, 1998.

[118] G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Mathematical Library.

Cambridge University Press, 2000. ISBN 9780521663960.

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research projects motivating this thesis
	1.1.1 Laser-based thermal upsetting processes
	1.1.2 Production of laser welded hybrid joints
	1.1.3 Keyhole-based laser welding

	1.2 Modeling and numerical solution of multiphysics problems
	1.3 Research objectives
	1.4 Outline of the thesis

	2 A brief introduction to solving PDE-based problems involving discontinuous features
	2.1 Representation of interfaces and boundaries: The level set method
	2.2 A brief introduction to (fitted) finite element methods
	2.2.1 The finite element method for steady-state problems
	2.2.2 The finite element method for time-dependent problems

	2.3 A brief introduction to eXtended discretization methods
	2.3.1 A short historical background of unfitted finite element methods
	2.3.2 The eXtended finite element method
	2.3.3 A brief overview of numerical challenges arising in unfitted methods
	2.3.3.1 Discrete interface representation and approximation
	2.3.3.2 Subdivision and quadrature
	2.3.3.3 Essential boundary and interface conditions
	2.3.3.4 Stability and conditioning issues
	2.3.3.5 Discretization of time-dependent problems
	2.3.3.6 Miscellaneous

	3 A hierarchical eXtended finite element method for multiphysics problems
	3.1 Analytical example involving multiple subdomains
	3.2 Domain decomposition using multiple level set functions
	3.2.1 Brief overview of methods based on multiple level set functions
	3.2.2 Domain decomposition by using a hierarchical level set method

	3.3 A hierarchical eXtended finite element method
	3.3.1 Hierarchical Heaviside enrichment
	3.3.2 Imposing interface and boundary conditions using Nitsche's method
	3.3.3 Time-dependent problems with moving interfaces

	4 Automated solution of multiphysics problems involving discontinuities
	4.1 The FEniCS project
	4.1.1 The Unified Form Language (UFL)
	4.1.2 FEniCS Form Compiler (FFC)
	4.1.3 DOLFIN library

	4.2 The PUM library
	4.2.1 Design and implementation details of the PUM library
	4.2.1.1 Reinterpreting concepts of UFL
	4.2.1.2 The FFC-PUM
	4.2.1.3 The DOLFIN-PUM library

	4.2.2 Drawbacks and missing features of the PUM library

	4.3 miXFEM - a multiple interfaces eXtended finite element method based on hierarchical enrichment
	4.3.1 Design and implementation details of the toolbox miXFEM
	4.3.1.1 Variational formulation of multiphysics problems in UFL
	4.3.1.2 miXFFC - A FEniCS Form Complier to consider multiphysics problems with discontinuities
	4.3.1.3 miXDOLFIN library

	4.3.2 Implementation details of miXDOLFIN
	4.3.2.1 Discrete interface representation
	4.3.2.2 Subtriangulation and quadrature
	4.3.2.3 Interface id mapping and imposing boundary and interface conditions
	4.3.2.4 Evolving interfaces
	4.3.2.5 Miscellaneous

	4.4 Additional numerical methods
	4.4.1 Level set toolbox
	4.4.1.1 Discretization
	4.4.1.2 Stabilization
	4.4.1.3 Reinitialization
	4.4.1.4 Volume correction
	4.4.1.5 Narrow band approach

	4.4.2 Construction of a non-material velocity field
	4.4.2.1 Initialization phase
	4.4.2.2 Extension phase

	5 Numerical results and applications
	5.1 The level set method
	5.1.1 Examples
	5.1.1.1 2D example: Swirling flow vortex
	5.1.1.2 2D example: Deforming droplet
	5.1.1.3 3D example: Swirling flow vortex
	5.1.1.4 3D example: Deforming droplet

	5.1.2 Simulation setup and computational approach
	5.1.3 Results

	5.2 Multiphase steady-state diffusion equation
	5.2.1 Modeling and implementation in miXFEM
	5.2.2 Approximation quality and convergence order

	5.3 Two-phase Stefan problem
	5.3.1 Model
	5.3.2 Discretization and computational approach
	5.3.3 Validation of the implementation and examples
	5.3.3.1 Example 1: Straight interface
	5.3.3.2 Example 2: Straight interface
	5.3.3.3 Example 3: Circular interface
	5.3.3.4 Example 4: Circular interface

	5.3.4 Results
	5.3.5 Convergence analysis for ex:stefan2

	5.4 Laser welded hybrid joints
	5.4.1 Modeling the process with the hierarchical level set method
	5.4.2 Discretization and computational approach
	5.4.3 Results

	5.5 A laser-based thermal upsetting process
	5.5.1 Modeling the process with the hierarchical level set method
	5.5.2 Discretization and computational approach
	5.5.3 Results

	5.6 Keyhole-based laser welding
	5.6.1 Modeling the process with the hierarchical level set method
	5.6.2 Discretization and computational approach
	5.6.3 Results

	5.7 Multiphase flow
	5.7.1 Modeling approach
	5.7.2 Coupled model using the hierarchical level set method
	5.7.3 Discretization and computational approach
	5.7.4 Results

	6 Summary and outlook
	6.1 Summary
	6.2 Outlook and future work

	A Keyhole model
	A.1 Laser model
	A.2 Heat conduction at the keyhole wall
	A.3 Location of the heat source
	A.4 Computation scheme for the keyhole geometry
	A.5 Multiple reflections
	A.6 Level set representation of the keyhole geometry

	Bibliography

