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Abstract

Time-harmonic acoustic wave propagation in an inhomogeneous ocean with depth-dependent
sound speed can be modeled by the Helmholtz equation in an infinite, three-dimensional waveguide
of finite height. Using variational theory in Sobolev spaces we prove well-posedness of the corre-
sponding scattering problem from a bounded inhomogeneity inside such an ocean. To this end, we
introduce an exterior Dirichlet-to-Neumann operator for depth-dependent sound speed and prove
boundedness, coercivity, and holomorphic dependence of this operator in function spaces adapted
to our weak solution theory. Analytic Fredholm theory then yields existence and uniqueness of
solution for the scattering problem for all but a countable sequence of frequencies. The latter result
generalizes corresponding theory for waveguide scattering with constant sound speed and easily
extends to various related scattering problems, e.g., to scattering from impenetrable obstacles.

1 Introduction

Propagation of sound waves inside an ocean is an active research area in applied mathematics and
engineering at least since the mid-20th century for its crucial importance for techniques like SONAR
or for oil exploration (see, e.g., the introduction of [BGWX04] or [Buc92]). After the millenium
change, precise models for sound propagation became even more important due to the observation
that man-made ocean noise pollution endangers marine mammals and legal thresholds for emitted
sound energies were set up. Checking these thresholds, e.g., for acoustic pulses produced by an air
guns, requires sufficiently accurate models yielding quantitatively exact simulations of sonic intensities.
One approach satisfying this requirement is to model scattering of time-harmonic acoustic waves in the
ocean using the Helmholtz equation and to discretize this equation using established approximation
technique as, e.g., finite elements or boundary elements.

It is well-known that a sound knowledge on variation theory of weak solutions in Sobolev spaces,
in particular the existence of G̊arding inequalities, is crucial for proving convergence of such numerical
approximations, see [SS11]. However, to the best of our knowledge, weak solution theory for ocean
scattering problems has up to now merely been set up for the case of a constant sound speed, restricting
the applicability of this approach to shallow seas. For this reason, it is our aim in this paper is to
provide rigorous theory for weak solutions via a variational approach for wave scattering in a flat ocean
with variable, depth-dependent refractive index. The crucial and non-trivial difficulty compared to
known results for constant sound speed, see [AGL08, AGL11], is that the eigenmodes of the ocean
are not known explicitly for such a setting. In consequence, we exploit on the one hand via estimates
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for these modes and their eigenvalues and, on the other hand, obtain holomorphic dependence of the
eigenvalues on the frequency from abstract perturbation theory.

Let us emphasize here that various other models for sound propagation as well as various other
approaches for existence of solutions to the Helmholtz equation in an ocean geometry exist. While
the most simple techniques are based on ideas from ray propagation (e.g., the Lloyd mirror), more
advanced methods rely on approximations to the wave or Helmholtz equation (e.g., the parabolic
approximation). The monograph [Jen11] and the survey papers [Buc92, AK77, AL87] review these
and similar methods from an engineering and applied mathematics perspective. Existence of classical
(i.e., twice differentiable) solutions to the Helmholtz equation for constant and depth-dependent sound
speed has been shown via integral equation techniques by Gilbert and Xu in a series of papers, partly
focussing on inverse scattering problems, see [Xu90, GX90, Xu90, Xu92, GX96, BGWX04]. Finally
note that [BGT85] considers finite element methods for ocean scattering with constant sound speed.

In this paper we use the following Helmholtz equation in the waveguide Ω := R2 × (0, H) with
constant depth H > 0,

∆u(x) +
ω2

c2(x3)
u(x) = 0 for x = (x̃, x3)> ∈ Ω, (1)

to model scattering of time-harmonic acoustic waves with time-dependence exp(−iωt), angular fre-
quency ω > 0, and small amplitude. The sound speed c : (0, H)→ R>0 depends on various environ-
mental parameters and is usually parametrized in terms of water temperature, salinity and pressure,
see, e.g., [DWCH93]. At a mid-latitude location it decreases from about 1505 m/s at the sea surface
to about 1485 m/s at the SOFAR channel in 600 meters depth and increases again to about 1515 m/s
in 3000 meters depth. Accurate models for sound propagation over large distances imperatively need
to reflect this depth-dependence, otherwise restricting their validity to shallow oceans.

When the sound speed is further locally perturbations inside the inhomogeneous waveguide Ω we
model such local perturbations by a refractive index function n : Ω → C such that the support of
the contrast q = n2 − 1 is a bounded set D ⊂ Ω, i.e., supp(q) = D. Time-harmonic sound waves
propagating in the perturbed ocean thus satisfy

∆u(x) +
ω2

c2(x3)
(1 + q(x))u(x) = 0 for x ∈ Ω. (2)

We assume in the following that the background sound speed c ∈ L∞(0, H) satisfies 0 < c− ≤ c(x3) ≤
c+ for almost all x3 ∈ (0, H), that is,

0 <
ω

c+
≤ ω

c(x3)
≤ ω

c−
for almost all x3 ∈ (0, H). (3)

Further, we model the free surface and the seabed of the ocean by a sound-soft and a sound-hard
boundary, respectively,

u = 0 on Γ0 := {x ∈ R3 : x3 = 0} and
∂u

∂x3
= 0 on ΓH := {x ∈ R3 : x3 = H}. (4)

This setting yields a sufficiently accurate to model acoustic waves with small amplitude in an ocean
with negligible seabed variation or a depth so large that little wave energy propagates to the seabed.
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More flexible boundary models for, e.g., the ocean-seabed interface exist, see, e.g., [GL97], but for
simplicity we restrict ourselves to the simpler condition Neumann condition from (4) describing a
perfectly reflecting bottom.

When an incident sound field ui that satisfies the unperturbed Helmholtz equation (1) subject to
the waveguide boundary conditions (4) is scattered from the inhomogeneous medium described by q,
then a scattered field us arises such that the total field u = ui + us solves the perturbed Helmholtz
equation (2) with contrast q, subject to u = 0 on Γ0 and ∂u/∂ν = 0 on ΓH . On interfaces where
q jumps we prescribe that both the trace and the normal derivative of u are continuous across the
interface. To ensure uniqueness of solution we further need to impose a radiation condition on u. This
condition will be constructed with the help of a modal analysis in Section 3 below. Note that we seek
for weak solutions to the scattering problem, i.e., for a function u that is locally in H1 and satisfies∫

Ω

(
∇u · ∇v − ω2

c2(x3)
(1 + q(x))uv

)
dx = 0 for all v ∈ C∞0 (Ω).

Let us finally indicate that all our results can be extended to dimension two; for the corresponding
proofs we refer to the preprint [LR15]. The latter reference also contains full proofs of two technical
lemmas from this paper that we omitted as they are rather similar to already published results.
Moreover, we remark that Theorem 5.2 provides a proof concerning the extension of a solution on a
bounded domain to all the waveguide that is missing in [AGL08].

The subsequent sections are organized as follows: Seeking for solutions to (1) by separation of
variables, a Liouville eigenvalue problem turns up that we investigate in Section 2. After showing
holomorphic dependence of the eigenvalues on the frequency, we use these eigenvalues in Section 3
rigorously set up the scattering problem we investigate, and in Section 4 to prove spectral character-
izations of Sobolev-type function spaces. Those are exploited in Section 5 for analyzing the exterior
Dirichlet-to-Neumann operator for the waveguide scattering problem. Finally, Section 6 contains and
proves the main existence and uniqueness result of the paper via a G̊arding inequality and analytic
Fredholm theory.

Notation: We define, for ρ > 0, domains Ωρ = {x ∈ Ω : |x̃| < ρ} and for arbitrary Lipschitz
domains U ⊂ Ω the Sobolev spaces H1

W (U) = {v ∈ H1(U) : v|U∩{x3=0} = 0}. This space is well-
defined due to the well-known trace theorem in H1. Moreover, H1

W,loc(Ω) = {v : Ω → C, v ∈
H1
W (Ωρ) for all ρ > 0} and H2

loc(Ω) = {v : Ω → C : v ∈ H2(Ωρ) for all ρ > 0}. Whenever two
real-valued expressions A,B satisfy that there is c > 0 such that c−1A ≤ B ≤ cA we write shorthand
A ' B to indicate this relation.

2 A Liouville Eigenvalue Problem

Our first aim is to derive a radiation condition characterizing outgoing time-harmonic waves in Ω. To
this end, we start by seeking solutions to the Helmholtz equation (1) with boundary conditions (4) by
separation of variables, i.e., of the form u(x̃, x3) = w(x̃)φ(x3) . One finds that w and φ need to solve

∆x̃w(x̃)

w(x̃)
= −φ

′′(x3)

φ(x3)
− ω2

c2(x3)
=: λ2 in Ω (5)
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for some λ ∈ C. (∆x̃ is the 2-dimensional Laplacian in the variables x̃.) Note that we choose λ2 to be
the eigenvalue since the square root of the eigenvalue is a crucial quantity for the scattering problem
later on; the sign of λ2 is chosen such that the eigenvalues found below as usual form a sequence
tending to +∞. We first consider the Liouville-type eigenvalue problem

φ′′(x3) +

[
ω2

c2(x3)
+ λ2

]
φ(x3) = 0 in (0, H), φ(0) = 0, and φ′(H) = 0. (6)

The latter boundary conditions correspond to (4). Variational theory for weak solutions to the self-
adjoint eigenvalue problem in the space H1

W (0, H) := {ψ ∈ H1(0, H) : ψ(0) = 0} is well-known. (The
latter space is well-defined by the well-known continuous embedding of H1(0, H) in the Hölder space
C0,1/2(0, H).) Multiplying (6) with a test function ψ ∈ H1

W ([0, H]), formally integrating by parts and
plugging in the boundary conditions for φ shows that an eigenpair (λ2, φ) ∈ C×H1

W ([0, H]) needs to
satisfy

a(φ, ϕ) :=

∫ H

0

(
φ′ ψ

′ − ω2

c2(x3)
φψ

)
dx3

!
= λ2

∫ H

0
φψ dx3 for all ψ ∈ H1

W ([0, H]). (7)

The sesquilinear form a is bounded in H1
W ([0, H]) and Poincaré’s inequality together with the com-

pact embedding of H1
W ([0, H]) in L2(0, H) shows that a is coercive in H1

W ([0, H]) up to a compact
perturbation. Since ω/c2 is real-valued, a is moreover symmetric, i.e., a(ϕ,ψ) = a(ψ,ϕ) for all
ϕ,ψ ∈ H1

W ([0, H]). Thus, standard eigenvalue theory, see, e.g., [McL00, Theorem 2.7], shows ex-
istence of a sequence of eigenvalues {λ2

j}j∈N ⊂ R such that λ2
j → +∞ as j → ∞ and associated

real-valued eigenfunctions φj ∈ H1
W ([0, H]) that are orthonormal in L2(0, H). We order the eigenval-

ues in increasing order, i.e., −∞ < λ2
1 ≤ λ2

2 ≤ λ2
3 ≤ . . . and define their square roots by

λj =


√
λ2
j if λ2

j ≥ 0,

−i
√
|λ2
j | if λ2

j < 0.
(8)

(The sign of λj is chosen to simplify expressions later on.) The square root function is then extended
from the real axis to a holomorphic function in the slit complex plane with branch cut along the
positive imaginary axis. The definition of a weak derivative in one dimension shows that φ′j belongs

to H1([0, H]), such that φ ∈ H2([0, H]) satisfies φ′′j (x3) + [ω2/c2(x3) + λ2
j ]φj(x3) = 0 with equality

in L2(0, H) and in particular almost everywhere in (0, H). As H2([0, H]) ⊂ C1,1/2([0, H]) all eigen-
functions φj ∈ C1,1/2([0, H]) satisfy the boundary conditions φj(0) = 0 and φ′(H) = 0 in the classical
sense of a point evaluation.

Remark 2.1. For constant background sound speed c± it is well-known that

λ2
j =

( π

2H
(2j − 1)

)2
− ω2

c2
±

and φj(x3) = sin
( π

2H
(2j − 1)x3

)
, x3 ∈ [0, H].

Lemma 2.2. (a) For j ∈ N it holds that[ π
2H

(2j − 1)
]2
− ω2

c2
−
≤ λ2

j ≤
[ π

2H
(2j − 1)

]2
− ω2

c2
+

. (9)
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Further, there are constants 0 < c < C such that cj2 ≤ |λ2
j | ≤ Cj2 for j large enough and cj ≤

‖φ′j‖L2(0,H) ≤ Cj as well as ‖φ′j‖L2(0,H) ≤ C(1 + |λj |2)1/2 for all j ∈ N.

Proof. (a) The min-max theorem implies for all j ∈ N that

λ2
j = min

Vj⊂H1
W ([0,H]),dim(Vj)=j

max
φj∈Vj ,‖φj‖=1

a(φj , φj)

≶ min
Vj⊂H1

W ([0,H]),dim(Vj)=j
max

φj∈Vj ,‖φj‖=1

∫ H

0

(
|φ′j |2 −

ω2

c2
±
|φ+
j |

2
)
dx3 =

( π

2H
(2j − 1)

)2
− ω2

c2
±
.

which shows (9) and the quadratic growth of λ2
j . The remaining estimates follow from∫ H

0
|φ′j |2dx3 =

∫ H

0

[
ω2

c2(x3)
+ λ2

j

]
|φj |2dx3 ≶

π2(2j − 1)2

4H2
+ ω2 c

2
± − c2

∓
c2

+c
2
−

, (10)

together with the fact that ‖φ′j‖L2(0,H) > 0 since ‖φ′j‖2L2(0,H) = 0 implies that φj ≡ 0 as φj(0) = 0.

The eigenvalues λ2
j obviously depend on the frequency ω > 0. Writing λ2

j = λ2
j (ω), the function

ω 7→ λ2
j (ω) can be extended holomorphically into a complex neighborhood of R>0.

Lemma 2.3. For all ω∗ > 0 there exists an open neighborhood U(ω∗) ⊂ C and index functions
`j : U(ω∗) → N for all j ∈ N that satisfy ∪j∈N`j(ω) = N and `j(ω) 6= `′j(ω) for j 6= j′ ∈ N and all

ω ∈ U(ω∗), such that the eigenvalue curves ω 7→ λ2
`j(ω)(ω) are real-analytic functions in U(ω∗) ∩ R>0

and extend to holomorphic functions in U(ω∗).

Proof. We exploit results on holomorphic families of operators from [Kat95, Chapter VII, §2 and §4].
The differential operators L(ω)u = u′′ + ((ω)2/c2)u on (0, H) with boundary conditions u(0) = 0
and u′(H) = 0 yield a selfadjoint holomorphic family of type (A) since u 7→ (ω2/c2)u is bounded
on L2(0, H), ω 7→ (ω2/c2)u is holomorphic in the complex parameter ω, and the domain {u ∈
H2(0, H), v(0) = 0} of L(ω) is independent of ω, compare [Kat95, Ch. VII, §1.1, §2.1, Th. 2.6]. These
differential operators also form of a holomorphic family of type (B) since the associated sesquilinear
form a from (7) is bounded.

Now, choose some ω∗ > 0. From [Kat95, Ch. VII, §3.1, Example 4.23] it follows that for each
eigenvalue λ2

j (ω∗) with multiplicity one that there is a complex neighborhood Uj of ω∗ such that

ω 7→ λ2
j (ω) can be extended from Uj ∩R as a holomorphic function of ω into Uj . If λ2

j (ω∗) is a multiple

eigenvalue, then ω 7→ λ2
j (ω) is in general not differentiable at ω∗, such that the eigenvalue index needs

to be re-ordered to obtain smooth eigenvalue curves, compare [Kat95, Ch. VII, §3.1, Ch. 2, Th. 6.1].
Indeed, the latter reference shows that if λ2

j (ω∗) is a multiple eigenvalue, then it has finite multiplicity
and there exists a complex neighborhood Uj of ω∗ and an index function `j : Uj ∩ R → N such that
ω 7→ λ2

`j(ω)(ω) can be extended holomorphically from Uj ∩ R into Uj .

It remains to show that the intersection ∩j∈NUj is non-empty. This is obviously true for any finite
union ∪|j|≤j0Uj with j0 ∈ N. Note that (9) implies that the eigenvalues λ2

j (ω∗) of L(ω∗) are simple if
j > j∗ for j∗ large enough, e.g., for

j∗ :=

⌈
ω2
∗H

2

2π2

(
1

c2
−
− 1

c2
+

)
+
H2

2π2

⌉
.
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Estimate (9) further implies that whenever j > j∗, the distance of λ2
j (ω∗) to the rest of the spectrum

of L(ω∗) is bounded from below by one. Thus, Theorem 4.8 in [Kat95, Ch. VII], compare also (4.45)
in the same chapter, implies for all j > j∗ that the holomorphic extension of λ2

j (ω∗) has a convergence

radius of at least (1 + 1/c2
−)−1. (Set ε = 1, a = 1, b = 0, and c = 1/c2

− ≥ ‖1/c2‖L∞(0,H) in (4.45).) In
particular, all eigenvalues λ2

j (ω∗), j > j∗, extend to holomorphic functions in B(ω∗, 1) and the lemma

holds with U(ω∗) := ∩j∗j=1Uj ∩B(ω∗, 1).

Theorem 2.4. There exists an complex neighborhood U of R>0 and index functions `j : U → N for
j ∈ N such that the eigenvalue curves λ2

`j(ω)(ω) are real-analytic curves that extend to holomorphic

functions in U for all j ∈ N. For each compact subset W of U , the set K0 = {ω ∈ W : there is j ∈
N such that λ2

j (ω) = 0} is finite.

Proof. We cover the positive reals (0,∞) with the neighborhoods U(ω) of ω > 0 constructed in
Lemma 2.3. For each compact interval [1/`, `] with ` ∈ N there exists a finite sub cover, which
allows to holomorphically continue all eigenvalue functions ω 7→ λ2

`j(ω)(ω), j ∈ N, into a complex

neighborhood U` of [1/`, `]. As ` ∈ N is arbitrary, this yields the claimed open set U = ∪`∈NU` in
C containing R>0. Finally, Theorems 1.9 and 1.10 in [Kat95, Ch. VII, §1.3] state that on compact
subsets W of U either for each ω ∈ W there is j = j(ω) ∈ N such that λ2

j(ω) = 0 or that the number

of such ω in W is finite. As (9) excludes the first alternative the set K0 from the claim is finite.

3 The Radiation Condition and the Scattering Problem

Now we are in a position the rigorously define a radiation conditon for solution to the Helmholtz
equation (1) and to subsequently formulate the scattering problem targeting weak radiating solutions.
Going back to the construction of solutions to (1) by separation of variables in (5) we note that
u(x̃, x3) =

∑
j∈N c(j)wj(x̃)φj(x3) with coefficients c(j) ∈ C formally solves (1) whenever

∆x̃wj − λ2
jwj = 0 in R2. (11)

Thus, the eigenfunctions φj to (7) give rise to plane wave-like solutions x 7→ exp(−λj θ · x̃)φj(x3) of
the Helmholtz equation in Ω with direction θ ∈ R2, |θ|2 = 1. These so-called waveguide modes are
propagating if iλj is positive (i.e., λ2

j < 0) and evanescent if iλj ∈ iR (i.e., λ2
j > 0). The number of

such propagating modes is (up to rotation) determined by the largest integer

J∗ = J∗(ω, c,H) such that λ2
J∗ < 0. (12)

In analogy to the case of a constant sound speed, see [AGL08], solutions to the Helmholtz equation
are called radiating if, roughly speaking, the above series representation holds for |x̃| sufficiently large
with modes wj that are required to satisfy Sommerfeld’s radiation condition if iλj ∈ R>0 is positive
and to be bounded if λj ∈ R>0 is positive.

The case λ2
j = 0 is somewhat exceptional as the mode uj is constant in x̃; note that the number

of propagating modes changes at the corresponding frequency.

Assumption 3.1. We assume that the frequency ω > 0 is such that λ2
j 6= 0 for all j ∈ N.
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Note that Theorem 2.4 states that there exists at most a countable set of exceptional frequencies
without accumulation point in (0,∞). As for sufficiently small ω > 0 all λ2

j are positive due to (9),
the only possible accumulation point of the exceptional frequencies is +∞.

Now we can rigorously formulate the scattering problem tackled in the sequel: Consider c ∈
L∞(0, H) such that 0 < c− ≤ c(x3) ≤ c+ for x3 ∈ (0, H), a contrast q ∈ L∞(Ω) such that Im(q) ≥ 0
and supp(q) ⊂ Ωρ, and an incident field ui ∈ H1

W,loc(Ω) that satisfies the Helmholtz equation (1)
weakly in Ω,∫

Ω

(
∇ui · ∇v − ω2

c2(x3)
uiv

)
dx = 0 for all v ∈ H1

W,loc(Ω) with compact support. (13)

We seek for a total field u ∈ H1
W,loc(Ω) such that∫

Ω

(
∇u · ∇v − ω2

c2(x3)
(1 + q)uv

)
dx = 0 for all v ∈ H1

W,loc(Ω) with compact support. (14)

Additionally, we require that

us(x) = u(x)− ui(x) =
∑
j∈N

wj(x̃)φj(x3) for all |x̃| > ρ, (15)

with solutions wj ∈ C∞(|x̃| > ρ) to (∆x̃ − λ2
j )wj = 0 in {|x̃| > ρ} that satisfy{

lim|x̃|→∞
√
|x̃|
(
∂wj
∂|x̃| − i|λj |wj

)
= 0 uniformly in x̃/|x̃| if λ2

j < 0,

wj(x̃) is uniformly bounded in |x̃| > ρ if λ2
j > 0,

for all j ∈ N. (16)

The series in (15) is required to converge in H1(ΩR \ Ωρ) for all R > ρ.
In the sequel, any solution to the Helmholtz equation outside Ωρ that satisfies (16) for all j ∈ N is

called a radiating solution.

Remark 3.2. (1) Any solution solving (14) can be represented in series form as in (15) since the
eigenfunctions {φj}j∈N ⊂ H1

W (0, H) are an orthonormal basis of L2(0, H). Thus, the above assumption
on the scattered field us merely requires the conditions (16) to be satisfied.
(2) The Neumann boundary conditions from (4) are implicitly included in (13) and (14).

4 Spectral Characterization of Function Spaces

To analyze the scattering problem defined in the last section we will ultimately transform it into a
variational problem on the bounded domain Ωρ for ρ > 0 such that supp(q) ⊂ Ωρ. To this end, we will
define and analyze exterior Dirichlet-to-Neumann operators in the next section. As a technical tool,
we next prove a spectral characterization of the H1-Norm and a related trace estimate. Note that all
results in this section hold true irrespective of whether Assumption 3.1 holds or not.

Standard theory on orthogonal bases in Hilbert spaces allows to expand u ∈ L2(Ωρ) into its Fourier
series with respect to the basis {φj}j∈N,

u(x) =
∑
j∈N

uj(x̃)φj(x3) where uj(x̃) =

∫ H

0
u(x̃, x3)φj(x3) dx3. (17)
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This series converges in L2(Ωρ) and ‖u‖2L2(Ωρ) =
∑

j∈N ‖uj‖2L2({|x̃|<ρ}) holds due to Parseval’s identity.

Lemma 4.1. (a) The coefficients uj of u ∈ H1
W (Ωρ) from (17) belong to H1({|x̃| < ρ}) and

‖∇x̃u‖2L2(Ωρ) =
∑
j∈N
‖∇x̃uj(x̃)‖2L2({|x̃|<ρ}) .

(b) If u ∈ C2(Ωρ), then the series expansion (17) converges absolutely and uniformly. Additionally,
this expansion can be differentiated term by term with respect to x3 and the series converges absolutely
and uniformly,

∂u

∂x3
(x) =

∑
j∈N

uj(x̃)φ′j(x3) for x ∈ Ωρ. (18)

Proof. (a) The function u =
∑

j∈N uj(x̃)φj(x3) ∈ L2(Ωρ) belongs to H1(Ωρ) if and only if its first-

order distributional derivatives all belong to L2(Ωρ). As u 7→ ∂u/∂xi is continuous from H1(Ωρ) into
L2(Ωρ), we can exchange this partial derivative for i = 1, . . . ,m−1 with the inner product of L2(0, H),∫ H

0

∂u

∂xi
(x)φl(x3) dx3 =

∂

∂xi

∫ H

0

∑
j∈N

uj(x̃)φj(x3)φl(x3) dx3 =
∂

∂xi
u`(x̃). (19)

The right-hand side is square-integrable, since the left-hand side can be estimated in L2({|x̃| < ρ})
by ‖∂u/∂xi‖L2(Ωρ). Thus, uj(x̃) ∈ H1({|x̃| < ρ}). Parseval’s identity states that ‖∂u/∂xi‖2L2(Ωρ) =∑

j∈N ‖∂uj/∂xi‖2L2({|x̃|<ρ}) for i = 1, . . . ,m− 1.

(b) This follows from results on function expansions in terms of the Sturm-Liouville eigenfunctions
{φj}j∈N, compare, e.g., [LS60, Chapter 3, §3-§5].

To state a spectral characterization of the H1-norm on Ωρ we introduce

Σρ :=
{
x ∈ Ω : |x̃| = ρ

}
=
{
x = (ρ cosϕ, ρ sinϕ, x3)> : ϕ ∈ (0, π), x3 ∈ (0, H)

}
, (20)

the cylindrical part of the boundary of Ωρ. As {exp(inϕ)φj}n∈Z,j∈N is a (non-normalized) orthogonal
basis of L2(Σρ) we can further expand u ∈ L2(Ωρ) in cylindrical coordinates as

u(x) =
∑
j∈Z

uj(x̃)φj(x3) =
∑
j∈N

∑
n∈Z

û(j, n, r)einϕφj(x3), x =
( r cosϕ
r sinϕ
x3

)
∈ Ωρ,

where û(j, n, r) :=
1

2π

∫ 2π

0

∫ H

0
u(r, ϕ, x3)e−inϕφj(x3) dx3, dϕ, n ∈ Z, j ∈ N.

(21)

Note that whenever we differentiate the Fourier coefficient û(j, n, r) with respect to the radial variable
we write û′(j, n, r) instead of ∂û(j, n, r)/∂r.

Lemma 4.2. For u ∈ H1
W (Ωρ) it holds that

‖u‖2H1(Ωρ) '
∑
j∈N

∑
n∈Z

∫ ρ

0

[
(1 + |λj |2)|û(j, n, r)|2 +

n2

r2
|û(j, n, r)|2 + |û′(j, n, r)|2

]
r dr. (22)
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Proof. It is sufficient to show the claim for u =
∑

j∈N uj(x̃)φj(x3) in the dense subset H1
W (Ωρ)∩C2(Ωρ)

of H1
W (Ωρ). In this situation, Lemma 4.1 states that (∂u/∂x3)(x) =

∑
j∈N uj(x̃)φ′j(x3) is an absolutely

and uniformly converging series representation in Ωρ.
Parseval’s identity applied to the orthogonal eigenfunctions {φj}j∈N and the trigonometric mono-

mials, together with the transformation formula, shows that

‖u‖2L2(Ωρ) =
∑
j∈N
‖uj‖2L2({|x̃|<ρ}) =

∑
j∈N

∑
n∈Z

∫ ρ

0
|û(j, n, r)|2 r dr.

Recall the representation of the gradient in cylinder coordinates,

∇u =
∂u

∂r
er +

1

r

∂u

∂ϕ
eϕ +

∂u

∂x3
ex3 , with er =

( cosϕ
sinϕ

0

)
, eϕ =

(− sinϕ
cosϕ

0

)
, and ex3 =

(
0
0
1

)
.

Lemma 4.1 shows that ∇x̃u ∈ H1({|x̃| < ρ}), that ‖∇x̃u‖2L2(Ωρ) =
∑

j∈N ‖∇x̃uj‖2L2({|x̃|<ρ}), and the

transformation theorem together with the orthogonality of the trigonometric polynomials implies that
(see, e.g., (A.35) in [Kir11])

‖∇x̃uj‖2L2({|x̃|<ρ}) = 2π
∑
j∈N

∑
n∈Z

∫ ρ

0

[(
1 +

n2

r2

)
|û(j, n, r)|2 + |û′(j, n, r)|2

]
r dr. (23)

Finally, the variational formulation of the eigenvalue problem (6) for (λj , φj) allows to show that∥∥∥ ∂u
∂x3

∥∥∥2

L2(Ωρ)
=

∫
{|x̃|<ρ}

∑
j,j′∈N

uj(x̃)uj′(x̃) dx̃

∫ H

0

( ω2

c2(x3)
+ λ2

j

)
φj(x3)φj′(x3) dx3

=
∑
j,j′∈N

∫
{|x̃|<ρ}

uj(x̃)uj′(x̃) dx̃

[
λ2
j

∫ H

0
φjφj′ dx3 +

∫ H

0

ω2

c2(x3)
φj(x3)φj′(x3) dx3

]

=
∑
j∈N

λ2
j‖uj‖2L2({|x̃|<ρ}) +

∫
{|x̃|<ρ}

∫ H

0

ω2

c2(x3)

∣∣∣∣∑
j∈N

uj(x̃)φj(x3)

∣∣∣∣2 dx3 dx̃

≶
∑
j∈N

λ2
j‖uj‖2L2({|x̃|<ρ}) +

ω2

c2
∓
‖u‖2L2(Ωρ) =

∑
j∈N

[
λ2
j +

ω2

c2
∓

]
‖uj‖2L2({|x̃|<ρ})

=
∑
j∈N

[
λ2
j +

ω2

c2
∓

]∑
n∈Z

∫ ρ

0
|û(j, n, r)|2 r dr.

Since merely the first eigenvalues λ2
j , 1 ≤ j ≤ J∗ ∈ N are negative, the corresponding finitely many

terms can be estimated by the L2-Norm of u, such that the last inequality together with Lemma 2.2(a)
and (23) shows the claimed norm equivalence. Note that the equivalence constants depend on ω and
J∗; however, they can be chosen uniformly for frequencies ω in any compact subset of R>0.

It is well-known that the trace operator T , first defined for continuous functions u ∈ C(Σρ) by
u 7→ u|Σρ , can be extended to a bounded linear operator from H1(Ωρ) into H1/2(Σρ) ⊂ L2(Σρ), see,
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e.g., [McL00]. We introduce special subspaces of this trace space adapted to H1
W (Ωρ),

V :=

{
ψ ∈ L2(Σρ) : ψ =

∑
j∈N

∑
n∈Z

ψ̂(j, n)ein ·φj ,
∑
j∈N

∑
n∈Z

(1 + |n|2 + |λj |2)1/2|ψ̂(j, n)|2 < ∞
}
,

a Hilbert space with inner product (ψ, θ)V = 2πρ
∑

j∈N
∑

n∈Z(1 + |n|2 + |λj |2)1/2ψ̂(j, n)θ̂(j, n) for

ψ, θ ∈ V . The dual space V ′ with respect to L2(Σρ) of V is equipped with inner product

(ψ, θ)V ′ = 2πρ
∑
j∈N

∑
n∈Z

(1 + |n|2 + |λj |2)−1/2ψ̂(j, n)θ̂(j, n) for ψ, θ ∈ V ′,

and the dual evaluation 〈·, ·〉V ′×V is simply abbreviated as 〈·, ·〉.

Theorem 4.3. The trace operator T is bounded and onto from H1(Ωρ) into V .

Proof. The Cauchy-Schwarz inequality applied to the representation of u ∈ H1
W (Ωρ) from (21) shows

that

ρ2|û(j, n, ρ)|2 =

∫ ρ

0

d

dr
(r2|û(j, n, r)|2) dr = 2

∫ ρ

0
r|û(j, n, r)|2 dr + 2 Re

∫ ρ

0
û(j, n, r)û′(j, n, r)r2dr

≤ 2

∫ ρ

0
|û(j, n, r)|2r dr + 2ρ

(∫ ρ

0
|û(j, n, r)|2r dr

)1/2(∫ ρ

0
|û′(j, n, r)|2r dr

)1/2
.

Thus,

(1 + |n|2 + |λj |2)1/2|û(j, n, ρ)|2 ≤ C
∫ ρ

0

[
(1 + |n|2 + |λj |2)|û(j, n, r)|2 + |û′(j, n, r)|2

]
r dr

≤ C
∫ ρ

0

[(
1 +
|n|2

r2

)
|û(j, n, r)|2 + (1 + |λj |2)|û(j, n, r)|2 + |û′(j, n, r)|2

]
r dr.

Due to (22), summation over n ∈ Z and j ∈ N shows that ‖Tu‖V ≤ C‖u‖H1(Ωρ). The definition of V
together with Lemma 4.2 shows that T is onto.

As usual, we restrict functions in H1
W (Ωρ) to Σρ without explicitly relying on the trace operator.

5 The Exterior Dirichlet-to-Neumann Operator

We will now construct and analyze an exterior Dirichlet-to-Neumann map on the surface Σρ, mapping
Dirichlet data on Σρ to the Neumann data on Σρ of the (unique) radiating solution in Ω \ Ωρ to the
Helmholtz equation (1). To this end, we assume that Assumption 3.1 holds, i.e., no eigenvalue λ2

j ∈ R
vanishes, such that

u(x) =
∑
j∈N

∑
n∈Z

û(j, n)H(1)
n (iλjr)e

inϕφj(x3), x =
( r cosϕ
r sinϕ
x3

)
∈ Ω \ Ωρ, (24)

10



defines a formal solution to the Helmholtz equation (1) in Ω \ Ωρ that satisfies the boundary condi-

tions (4). Indeed, the Hankel function H
(1)
n of the first kind and order n satisfies Bessel’s differential

equation, such that

x̃ 7→ vj,n(x̃) = H(1)
n (iλjr)e

inϕ, x̃ = r
( cosϕ

sinϕ

)
, r > 0,

satisfies the two-dimensional Helmholtz equation (∆x̃ − λ2
j )vn,j = 0 in R2 \ {0}, see [CK12]. The

asymptotic expansion of the Hankel function for large arguments moreover shows that each term of u
satisfies the radiation condition (16) such that (24) defines a radiating solution. Formally computing
the normal derivative of u on Σρ motivates the following definition.

Definition 5.1. For ψ ∈ V with Fourier coefficients (ψ̂(j, n))j∈N, n∈Z, the Dirichlet-to-Neumann
operator Λ is defined by

Λ : V → V ′, ψ 7→ i
∑
j∈N

∑
n∈Z

λj
H

(1)′
n (iλjρ)

H
(1)
n (iλjρ)

ψ̂(j, n)einϕφj(x3), x =
( ρ cosϕ
ρ sinϕ
x3

)
∈ Σρ. (25)

Theorem 5.2. The operator Λ from (25) is well-defined and bounded from V into V ′. For ψ ∈ V ,

u(x) =
∑
j∈N

∑
n∈Z

ψ̂(j, n)
H

(1)
n (iλjr)

H
(1)
n (iλjρ)

einϕφj(x3), x =
( r cosϕ
r sinϕ
x3

)
∈ Ω \ Ωρ, (26)

belongs to H1
loc(Ω\Ωρ) and there is C = C(ρ) > 0 independent of ψ such that ‖u‖H1

loc(Ω\Ωρ) ≤ C‖ψ‖V .

Further, u is a the unique weak solution to the Helmholtz equation in Ω \ Ωρ with boundary values
u|Σρ = ψ that satisfies both the waveguide boundary conditions (4) and the radiation condition (16).

Proof. (1) The boundedness of Λ follows almost literally as the proof of Lemma 2.1 in [AGL08] and
will be omitted. The only additional fact required here is the estimate |λ2

j | ≤ Cj2 for j ∈ N from (9).

(2) In this part we abbreviate ΩR \Ωρ for R > ρ by Ωρ,R and {x̃ ∈ R2, ρ < |x̃| < R} by Ω̃ρ,R. For
|x̃| > ρ, the function u from (26) can be written as

u(x) =
∑
j∈N

uj(x̃)φj(x3) with uj(x̃) =
∑
n∈Z

ψ̂(j, n)
H

(1)
n (iλjr)

H
(1)
n (iλjρ)

einϕ, x̃ =
( r cosϕ
r sinϕ

)
.

We first show that the latter series converges in H1(Ωρ,R) for arbitrary R > ρ, such that u ∈ H1
loc(Ω \

Ωρ). As in the proof of Theorem 4.2 one shows that

‖u‖2H1(Ωρ,R) ≤ C
∑
j∈N

[
‖uj‖2H1(Ω̃ρ,R)

+ (1 + |λj |2)‖uj‖2L2(Ω̃ρ,R)

]
. (27)

For ξ ∈ R and a parameter c0 = 1 + maxj∈N(−λ2
j ) <∞ we set

α(ξ) =

{√
c0 − ξ2 if c0 ≥ ξ2,

i
√
ξ2 − c0 if c0 ≥ ξ2.

11



The latter function is then used to define

ṽn,ξ(x̃) :=
H

(1)
n (rα(ξ))

H
(1)
n (ρα(ξ))

einϕ for x̃ = r
( cosϕ

sinϕ

)
∈ Ω̃ρ,R, n ∈ Z and n ∈ Z.

It is not difficult to see that the smooth function ṽn,ξ belongs to H1(Ω̃ρ,R). Moreover, Lemma A6
in [CH07] states that there exists C > 0 independent of ξ ∈ R and n ∈ Z such that

‖ṽn,ξ‖2H1(Ω̃ρ,R)
≤ C(ρ,R) (1 + n2 + ξ2)1/2.

Since c0 = 1 + maxj∈N(−λ2
j ) it holds c0 + λ2

j > 1 for all j ∈ N such that there exists a unique positive

solution ξj > 0 to ξ2
j = c0 + λ2

j . Thus, α(ξj) = iλj and ξ2
j ≤ C(k)(1 + |λj |2), such that

‖ṽn,ξj‖
2
H1(Ω̃ρ,R)

≤ C (1 + n2 + ξ2
j )1/2 = C (1 + n2 + c0 + λ2

j )
1/2 ≤ C (1 + n2 + |λj |2)1/2

with C = C(ρ,R, k) and

‖uj‖2H1(Ω̃ρ,R)
≤
∑
n∈Z
|ψ̂(j, n)|2‖ṽn,ξj‖

2
H1(Ω̃ρ,R)

≤ C(ρ,R, k)
∑
n∈Z

(1 + n2 + |λj |2)1/2|ψ̂(j, n)|2.

Of course, the corresponding L2-estimate ‖uj‖2L2(Ω̃ρ,R)
≤
∑

n∈Z |ψ̂(j, n)|2‖ṽn,ξj‖2L2(Ω̃ρ,R)
holds as well

and we conclude by (27) that

‖u‖2H1(Ωρ,R) ≤ C
∑
j∈N

∑
n∈Z

[
(1 + n2 + |λj |2)1/2 + (1 + |λj |2)‖ṽn,ξj‖

2
L2(Ω̃ρ,R)

]
|ψ̂(j, n)|2. (28)

To estimate the L2-norm of ṽn,ξj we note that

‖ṽn,ξj‖
2
L2(Ω̃ρ,R)

= 2π

∫ R

ρ

∣∣∣∣∣H(1)
n (iλjr)

H
(1)
n (iλjρ)

∣∣∣∣∣
2
dr

r
≤ 2π

ρ

∫ R

ρ

∣∣H(1)
n (iλjr)

∣∣2∣∣H(1)
n (iλjρ)

∣∣2 dr ≤ 2π(R− ρ) for all j ∈ N,

since
∣∣H(1)

n (iλjr)
∣∣2/∣∣H(1)

n (iλjρ)
∣∣ ≤ 1 for r > 0 by Lemma A2 in [CH07]. Moreover, if j > J∗ (the

parameter J∗ was defined in (12)), i.e., if λ2
j > 0, then

∣∣H(1)
n (iλjr)

∣∣2/∣∣H(1)
n (iλjρ)

∣∣2 ≤ exp(−(r−ρ)|λj |)
for r > ρ due to [CH07, Lem. A3] and

‖ṽn,ξj‖
2
L2(Ω̃ρ,R)

≤ 2π

ρ

∫ R

ρ
e−(r−ρ)|λj | dr ≤ 2π

|λj |

[
1− e−(R−ρ)|λj |

]
≤ 4π

|λj |
≤ C

(1 + |λj |2)1/2
.

Together with (28), the last estimate shows that ‖u‖2H1(Ωρ,R) ≤ C‖ψ‖
2
V .

The function u satisfies the Helmholtz equation in Ωρ,R in the classical sense, and for this reason
also weakly, by construction of the eigenfunctions ψj to (7), since ṽn,ξj solves (∆x̃ − λ2

j )ṽn,ξj = 0 in

{|x̃| > ρ} and since the series in (26) was shown to converge in H1(Ωρ,R). The same argument shows
that u satisfies the waveguide boundary conditions and it is obvious that u|Σρ = ψ. Well-known
properties of Hankel and Kelvin functions show that ṽn,ξj is a radiating solution to the Helmholtz
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equation if 1 ≤ j ≤ J∗, i.e., λ2
j < 0, whereas ṽn,ξj is bounded (and even exponentially decaying) if

j ≥ J∗, i.e., λ2
j > 0. This implies that u satisfies the radiation condition (16). To show uniqueness of

u, consider the difference w =
∑

j∈Nwjφj of u and a further radiating solution v to the same exterior

boundary value problem. For arbitrary j ∈ N, wj ∈ H1
loc({|x̃| > ρ}) satisfies (∆x̃ − λ2

j )ṽn,ξj = 0

in {|x̃| > ρ} and vanishes on {|x̃| = ρ}. Moreover, if λ2
j < 0 the function wj satisfies the two-

dimensional Sommerfeld radiation condition (the first condition in (16)) and, for this reason, must
vanish (see [CK12]). If λ2

j > 0 the function wj is exponentially decaying in x̃ and belongs in particular

to H1({|x̃| > ρ}). A partial integration shows that
∫
{|x̃|>ρ}(|∇x̃wj |

2 +λ2
j |wj |2) dx̃ = 0. In consequence,

w vanishes as well, which implies uniqueness of the radiating solution.

The next lemma formulates a weak coercivity result for Λ when applied to ψ ∈ V with represen-
tation ψ =

∑
j,n ψ̂(j, n) exp(in ·)φj .

Lemma 5.3. There exist constants C > 0 and c0 > 0 such that Λ is L2-coercive at small frequencies:
For 0 < ω ≤ C it holds that −〈Λψ,ψ〉 ≥ c0ω‖ψ‖2L2(Σρ) for all ψ ∈ V .

Proof. Due to (9) we can choose C > 0 so small such that the lower bound (π(2j−1)/(2H))2−ω2/c2
−

of all eigenvalues λ2
j = λ2

j (ω) is positive for 0 < ω < C. As in the proof of Lemma 2.2 in [AGL08] this
implies that

−〈Λψ,ψ〉 ≥ 2πρ
∑
j∈N

[
λj |w(j, 0)|2 + c1λj |ŵ(j, 1)|2 +

∞∑
n=2

λj
( λjρ

λjρ+ 2n
+

n

λjρ

)
|
]
ŵ(j, n)|2,

with ŵ(j, n) = ψ̂(j, n) + ψ̂(j,−n) for n 6= 0 and ŵ(j, 0) = ψ̂(j, 0), j ∈ N. Due to the binomial formula,

λ
1/2
j

(
λjρ

λjρ+ 2n
+

n

λjρ

)
≥ 2λ

1/2
j

(
n

λjρ+ 2n

)1/2

≥
2λ

1/2
j

(λjρ+ 2)1/2
≥ 2λ

1/2
1

(λ1ρ+ 2)1/2
> 0, n ∈ N,

because n 7→ n/(λjρ+ 2n) and j 7→ λj/(λjρ+ 2) increase in n and j, respectively. By Lemma 2.2(a)
it holds for j ∈ N and 0 < ω < min{(πc−)/(4H), 1} that

3

c2
−
ω2 ≤ ω2

(
π2

4ω2H2
(2j − 1)2 − 1

c2
−

)
≤ λ2

j . (29)

By possibly further reducing 0 < C < 1, the latter estimate shows that λj ≥ c∗ω holds for all j ∈ N
and some c∗ > 0. Further reducing 0 < C ≤ min(c

−1/2
∗ , (πc−)/(2H)) yields λ2

j < 1 due to (29), i.e.,

λj ≤
√
λj . In consequence, for some c0 > 0 and all ψ ∈ V there holds

−〈Λψ,ψ〉 ≥ c0

∑
j∈N

[
λj |w(j, 0)|2 + λj |ŵ(j, 1)|2 +

√
λj

∞∑
n=2

|ŵ(j, n)|2
]
≥ c0ω

∑
j∈N

∑
n∈Z
|ψ̂(j, n)|2

and Plancherel’s identity implies the claim.
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Lemma 5.4. If ω > 0 there exists C = C(ω) > 0 such that there holds

−Re 〈Λψ,ψ〉 ≥ −2πρC

J∗∑
j=1

∑
n∈Z
|ψ̂(j, n)|2 ≥ −C‖ψ‖2L2(Σρ)

for all ψ ∈ V with Fourier coefficients {ψ̂(j, n)}j∈N, n∈Z (see (12) for the definition of J∗ = J∗(ω, c,H)).

We omit the proof that precisely follows the arguments of the proof of Lemma 2.3 in [AGL08].
To be able to apply analytic Fredholm theory when establishing existence theory for the scattering

problem (14–16) we finally show that Λ = Λω depends holomorphically on ω.

Lemma 5.5. For all ω∗ > 0 such that λj(ω∗) 6= 0 for j ∈ N and all ω∗ > 0 small enough to satisfy
the assumption of Lemma 5.3 there exists an open connected set U ⊂ C containing ω∗ and ω∗ such
that ω 7→ Λω is an analytic operator-valued function in U .

Proof. Due to Theorem 8.12(b) in [Muj85] we merely need to show that

〈Λφ, ψ〉 = 2πiρ
∑
j∈N

λj(ω)

∞∑
n∈Z

H
(1)′
n (iλj(ω)ρ)

H
(1)
n (iλ`j(ω)(ω)ρ)

φ̂(j, n)ψ̂(j, n) (30)

= 2πiρ
∑
j∈N

λj(ω)
∞∑
n∈Z

[H(1)′

n−1(iλj(ω)ρ)

H
(1)
n (iλj(ω)ρ)

− n

iλj(ω)ρ

]
φ̂(j, n)ψ̂(j, n), for φ, ψ ∈ V,

is a holomorphic function in an open connected set U ⊂ C that satisfies the properties claimed in the
lemma. Relying on the index functions `j , j ∈ N, Lemma 2.4 states that all eigenvalues ω 7→ λ2

`j(ω)(ω)

can be extended to holomorphic functions in some neighborhood U0 of R>0. We choose δ1 > 0 such
that U1 = {z ∈ U, 0 ≤ Re(z) ≤ ω∗+ 1, | Im(z)| ≤ δ1} ⊂ U is connected, compact and contains ω∗ and
ω∗. Due to Theorem 2.4, the set K0 = {ω ∈ U1 : there is j ∈ N such that λ2

j (ω) = 0} is finite. Thus,
by further reducing the parameter δ1 we can assume without loss of generality that K0 contains merely
real numbers. Recall that the square root function z 7→ z1/2 that was defined for complex numbers
via a branch cut at the positive real axis is holomorphic in the slit complex plane C \ iR≥0. The
roots ω 7→ λ`j(ω)(ω) are hence holomorphic functions in the set U2 := {z ∈ U1 : Im z < 0 if ω ∈ K0}.
Further restricting this set we define the open set U3 := {z ∈ U2, B(z, δ2) ⊂ U2} for a parameter δ2 > 0.
For δ2 small enough U3 is open, connected and contains ω∗ and ω∗. Recall that the Hankel function

z 7→ H
(1)
n (z) and its derivative are holomorphic in the domain {z ∈ C, z 6= 0, −π/2 < arg(z) < π}.

The fraction z 7→ H
(1)′
n (z)/H

(1)
n (z) is holomorphic for z 6= 0 and arg(z) ∈ [0, π) since z 7→ H

(1)
n (z)

does not possess zeros in this domain. Moreover, an infinite number of zeros of z 7→ H
(1)
n (z) in the

lower complex half-plane is contained in the quadrant −π < arg(z) ≤ −π/2, while at most n zeros
are contained in −π/2 < arg(z) ≤ 0, compare the paragraph on complex zeros of the Hankel function
in [AS64, pg. 373–374]. If follows from [CS82, eq. (2.8)] or [AS64, pg. 374] that these finitely many

zeros lie in the sector −π/2 < arg(z) ≤ −ε for some ε > 0, independent of n, i.e., z 7→ H
(1)′
n (z)/H

(1)
n (z)

is holomorphic in {z 6= 0, arg(z) ∈ (−ε, π + ε)}. Since the numbers iλj are either positive or purely
imaginary with positive imaginary part we deduce that, upon reducing the parameter δ1 > 0 for
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the construction of U1,2,3 a second time, the function ω 7→ H
(1)′
n (iλ`j(ω)(ω)ρ)/H

(1)
n (iλ`j(ω)(ω)ρ) is

holomorphic for ω ∈ U3.
Thus, each term in the series in (30) is holomorphic in U3. Holomorphy of the entire series follows

from the uniform and absolute convergence of this series: If we set

gj(ω) = λj(ω)
∑
n∈Z

[H(1)
n−1(iλj(ω)ρ)

H
(1)
n (iλj(ω)ρ)

− n

iλj(ω)ρ

]
φ̂(j, n)ψ̂(j, n) (31)

= λj(ω)
∑
n∈Z

H
(1)
n−1(iλj(ω)ρ)

H
(1)
n (iλj(ω)ρ)

φ̂(j, n)ψ̂(j, n)−Rj(u, v), Rj(u, v) :=
∑
n∈Z

n

iρ
φ̂(j, n)ψ̂(j, n),

then Rj(u, v) is a bounded sesquilinear form on V independent of ω. For all j > J∗(ω
∗ + 1, c,H) and

all ω ∈ U3 ∩ R it holds that iλj(ω) ∈ iR>0, such that∣∣∣∣∣H
(1)
n−1(iλj(ω)ρ)

H
(1)
n (iλj(ω)ρ)

∣∣∣∣∣ =

∣∣∣∣Kn−1(λj(ω)ρ)

Kn(λj(ω)ρ)

∣∣∣∣ ≤ C for ω ∈ U3, n ∈ Z,

due to [AGL08, Lemma A.2 & (A10)]. For 1 ≤ j ≤ J∗(ω
∗ + 1, c,H) the asymptotic expansion of the

Hankel functions for large orders, see [AS64, (9.3.1)], implies that there is a constant C > 0 such that
the last bound is uniformly valid for all j ∈ N. We deduce that

|gj(ω)| ≤
∑
n∈Z

(C|λj(ω)|+ n/ρ) |φ̂(j, n)ψ̂(j, n)| ≤ C‖u‖V ‖v‖V

since ω 7→ λj(ω) is holomorphic on U0 and hence bounded on U3 b U0. We deduce that the series in
(31) converges absolutely and uniformly for each ω ∈ U3 and is hence a holomorphic function of ω.

As in the proof of Theorem 5.2 one shows that the series in (30) is uniformly convergent in j ∈ N
as well, which finally implies the claim.

6 Existence and Uniqueness of Solutions to the Scattering Problem

We have now prepared all tools to provide existence theory for weak solutions of the waveguide
scattering problem (14–16). Plugging together these tools is rather standard and follows, e.g., the
approach taken in [AGL08].

Assume that ui ∈ H1
W,loc(Ω) is an incident field that solves the Helmholtz equation (13) weakly.

Assume further that u ∈ H1
W,loc(Ω) solves (14) for all v ∈ H1

W (Ω) with compact support such that

us = u − ui satisfies the radiation conditions (16). Since (14) implies that ∆u = div∇u ∈ L2
loc(Ω) is

locally square integrable, we can integrate by parts, to find that

0 =

∫
Ω

(
∆u+

ω2

c2(xm)
(1 + q)u

)
v dx holds for all v ∈ H1(Ω) with compact support in Ω,

that is, ∆u+ (ω2/c2)(1 + q)u = 0 holds in L2(ΩR) for all R > 0. As the boundary of Ω is flat, elliptic
regularity results, see, e.g., [McL00, Ch. 4], moreover imply that u ∈ H2

loc(Ω).
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As us = u − ui is by assumption radiating, Theorem (5.2) implies that [∂us/∂ν]|Σρ = Λ(us|Σρ)
holds in V ′, where ν denotes the exterior unit normal vector to Ωρ. In consequence, the normal
derivative of u = ui + us on Σρ equals

∂u

∂ν
=
∂ui

∂ν
+
∂us

∂ν
=
∂ui

∂ν
+ Λ

(
(u− ui)

∣∣
Σρ

)
in V ′.

Multiplying ∆u+ (ω2/c2)(1 + q)u = 0 in Ωρ by v ∈ H1
W (Ωρ) and integrating by parts in Ωρ we find

0 =

∫
Ωρ

(
∇u · ∇v − ω2

c2(x3)
(1 + q)uv

)
dx−

∫
Σρ

∂u

∂ν
v ds+

∫
Γ0,ρ

∂u

∂ν
v ds+

∫
ΓH,ρ

∂u

∂ν
v ds

=

∫
Ωρ

(
∇u · ∇v − ω2

c2(x3)
(1 + q)uv

)
dx− 〈Λ(u), v〉 −

〈(
∂ui

∂ν
− Λ(ui)

)
, v

〉
.

Hence, a reformulation of the scattering problem (14–16) on Ωρ is to find u ∈ H1
W (Ωρ) solving

Bω(u, v) :=

∫
Ωρ

(
∇u · ∇v − ω2

c2(x3)
(1 + q)uv

)
dx− 〈Λ(u), v〉 !

= F (v) for all v ∈ H1
W (Ωρ), (32)

where F (v) = 〈(∂ui/∂ν − Λ(ui)), v〉 for v ∈ H1
W (Ωρ). Of course, (32) can also be considered for

arbitrary continuous anti-linear forms F ∈ H1
W (Ωρ)

′ := L(H1
W (Ωρ),C) that can be used to tackle

source problems instead of scattering problems.

Theorem 6.1 (Existence and uniqueness of solution). Assume that Assumption 3.1 holds.
(1) The sesquilinear form Bω and the anti-linear form F from (32) are bounded on H1

W (Ωρ) and
Bω satisfies a G̊arding inequality. Thus, the Fredholm alternative holds: Whenever the variational
problem (32) for ui = 0 (i.e., for F = 0) possesses only the trivial solution, existence and uniqueness
of solution holds for any F ∈ H1

W (Ωρ)
′.

(2) There exists ω0 > 0 such that the variational problem (32) is uniquely solvable for all incident
fields ui for all frequencies ω ∈ (0, ω0).

(3) The variational problem (32) is uniquely solvable for all F ∈ H1
W (Ωρ)

′ and all frequencies
ω > 0 except possibly for a discrete set of exceptional frequencies {ω`}L∗`=1 ⊂ R>ω0, L∗ ∈ N ∪ {+∞}.
If L∗ =∞, then ω` →∞ as `→∞.

Proof. (1) Boundedness of Λ, see Lemma 5.2, and the trace estimate from Theorem 4.3, and the trace
estimate ‖∂ui/∂ν‖H−1/2(Σρ) ≤ ‖div∇ui‖L2(Ωρ) ≤ (ω2/c2

−)‖ui‖L2(Ωρ) imply the boundedness of Bω and

F on H1
W (Ωρ). The G̊arding inequality for Bω follows from the lower bound of Λ from Lemma 5.4,

Re(Bω(u, u)) ≥ ‖u‖2H1
W (Ωρ) −

(
ω2

c2
−

(1 + ‖q‖L∞(Ωρ)) + 1

)
‖u‖2L2(Ωρ) − Re

(∫
Σρ

Λu v ds
)

≥ ‖u‖2H1
W (Ωρ) −

(
ω2

c2
−

(1 + ‖q‖L∞(Ωρ)) + 1

)
‖u‖2L2(Ωρ) − C‖u‖

2
L2(Σρ) for u ∈ H1

W (Ωρ).

As the embedding of H1
W (Ωρ) in L2(Ωρ) is compact and since the trace operator from H1

W (Ωρ) into
L2(Σρ) is compact due to the compact embedding of H1/2(Σρ) in L2(Σρ) the latter estimate provides
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indeed a G̊arding inequality for Bω. In consequence, the variational problem (32) is Fredholm of index
zero and uniqueness of solution implies existence of solution together with continuous dependence of
the solution on the right-hand side.

(2) L2-coercivity of Λ for small frequencies (see Lemma 5.3) and Poincaré’s inequality ‖u‖2L2(Ωρ) ≤
(H2/2)‖∇u‖2L2(Ωρ)m for u ∈ H1

W (Ωρ) imply that

Re(Bω(u, u)) ≥ ‖∇u‖2L2(Ωρ) −
ω2

c2
−

(1 + ‖q‖L∞(Ωρ))‖u‖2L2(Ωρ) + cω‖u‖2L2(Σρ)

≥ 1

2
‖∇u‖2L2(Ωρ) +

1

H2
‖u‖2L2(Ωρ) −

ω2

c2
−

(1 + ‖q‖L∞(Ωρ))‖u‖2L2(Ωρ) for u ∈ H1
W (Ωρ).

If ω > 0 is small enough, the right-hand side of this estimate is strictly positive and Bω is coercive on
H1
W (Ωρ) such that the Lax-Milgram Lemma implies the claim.

(3) Part (2) shows that (32) is uniquely solvable if ω > 0 is less than some ω0 > 0. For larger ω
we exploit holomorphy of ω 7→ Λω. More precisely, fix an arbitrary ω∗ > 0 such that λ2

j (ω
∗) 6= 0 for

all j ∈ N and some ω∗ ∈ (0, ω0). Lemma 5.5 shows that there exists an open connected set U ⊂ C
containing ω∗ and ω∗ such that ω 7→ Λω is an analytic operator-valued function in U . In consequence,
the entire sesquilinear form Bω(u, v) depends analytically on ω in U . Moreover, (32) is uniquely
solvable for frequency ω∗. Hence, analytic Fredholm theory implies that (32) is uniquely solvable for
all ω ∈ U except possibly for a countable sequence of exceptional frequencies without accumulation
point in U . In particular, there exists at most a countable set of real frequencies without finite
accumulation point where uniqueness of solution fails.

Theorem 6.2. Assume that Assumption 3.1 holds.
(1) If the variational problem (32) is uniquely solvable for any F ∈ H1

W (Ωρ)
′, then any solution

u ∈ H1
W (Ωρ) can be extended to the unique weak solution ũ ∈ H1

W,loc(Ω) ∩ H2
loc(Ω) of the waveguide

scattering problem (14–16) by setting ũ|Ωρ = u|Ωρ and

ũ(x) = ui(x) +
∑
j∈N

∑
n∈Z

û(j, n)
H

(1)
n (iλjr)

H
(1)
n (iλjρ)

einϕφj(x3) for x =
( r cosϕ
r sinϕ
x3

)
in Ω \ Ωρ, (33)

with coefficients û(j, n) defined by

û(j, n) =

∫ H

0

∫ 2π

0
(u− ui)

( ρ cosϕ
ρ sinϕ
x3

)
e−inϕφj dϕ dx3, j ∈ N, n ∈ Z. (34)

(2) If Im(q) > 0 on a non-empty open subset D of Ωρ, then (32) and the scattering problem (14–16)
are both uniquely solvable for all incident fields.

Proof. In this proof, we indicate by (·)|±Σρ if a trace on Σρ is taken from the inside (-) or from the

outside (+) of Ω.
(1) Assume that u ∈ H1

W (Ωρ) is the unique solution (32). As in the beginning of this section, we
choose v ∈ H1

W (Ωρ) such that v|Σρ = 0 and integrate by parts in (32) to find that

0 = −
∫

Ωρ

(
∆u+

ω2

c2(x3)
(1 + q)u

)
v dx+

∫
ΓH∩{|x̃|<ρ}

∂u

∂x3
v ds.
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Integrating now a second time by parts for a test function v ∈ H1
W (Ωρ) and exploiting the definition

of the right-hand side F in (32) then shows that〈(
∂u

∂ν
− Λ(u)

)
, v

〉
=

〈(
∂ui

∂ν
− Λ(ui)

)
, v

〉
for all v ∈ H1

W (Ωρ). (35)

Now we define us ∈ H1
W (Ωρ) by u = ui+us such that (35) and the surjectivity of the trace operator

imply that (∂us/∂ν)|Σρ = Λ(us|Σρ) holds in V ′. In Ω\Ωρ we define us by the series in (33), such that

ũ = ui + us holds in Ω \ Ωρ. By the radiation condition (16) for (u− ui)
∣∣
Ωρ

, the trace trace estimate

from Theorem 4.3, and the representation of functions in V we note that the coefficients û(j, n) in (34)
are defined such that

us|−Σρ = (u− ui)
∣∣−
Σρ

=
∑
j∈N

∑
n∈Z

û(j, n)ein ·φj = us|+Σρ = (u− ui)
∣∣+
Σρ
, holds in V .

This implies that that u|−Σρ equals the restriction ũ|+Σρ , i.e., the extension ũ is continuous over Σρ in

the trace sense. By construction of Λ and ũ, it follows from Theorem (5.2) that ũ ∈ H1
W,loc(Ω) is a

radiating solution to the Helmholtz equation in Ω \ Ωρ with normal derivative

∂ũ

∂ν

∣∣∣∣+
Σρ

=

[
∂ui

∂ν
+
∂us

∂ν

] ∣∣∣∣+
Σρ

=

[
∂ui

∂ν

] ∣∣∣∣+
Σρ

+ Λ(us|+Σρ) =

[
∂ui

∂ν

] ∣∣∣∣−
Σρ

+ Λ(us|−Σρ) =

[
∂ũ

∂ν

] ∣∣∣∣−
Σρ

in V ′.

As the normal derivative of ũ across Σρ is hence also continuous in the trace sense, the latter func-
tion is a weak solution in H1

W,loc(Ω) to the Helmholtz equation that solves the waveguide scattering

problem (14–16). Elliptic regularity results [McL00, Chapter 4] show that ũ ∈ H2
loc(Ω). Uniqueness

of this solution follows from uniqueness of solution to (32).
(2) We merely need to show that Im(q) > 0 on a non-empty open subset D ⊂ Ωρ implies that

any solution u ∈ H1
W (Ωρ) to (32) with F = 0 vanishes. Extend such a u by (33) to a solution in

H1
W,loc(Ω)∩H2

loc(Ω) of the scattering problem with ui = 0 and, by abuse of notation, call the extended

function again u. Taking the imaginary part of (32) with v = u and integrating by parts in ΩR \ Ωρ

yields

0 = ImBω(u, u) = −
∫

Ωρ

ω2 Im(q)

c2(x3)
|u|2 dx− Im

∫
Σρ

Λ(u)u ds =

∫
Ωρ

ω2 Im(q)

c2(x3)
|u|2 dx− Im

∫
Σρ

∂u

∂ν
u ds

=

∫
Ωρ

ω2 Im(q)

c2(x3)
|u|2 dx+ Im

∫
ΩR\Ωρ

[
|∇u|2 − ω2

c2(x3)
|u|2
]
dx− Im

∫
ΣR

∂u

∂ν
u ds, R > ρ.

The expansion u =
∑

j∈N ujφj of u ∈ H1
W,loc(Ω) ∩H2

loc(Ω) shows that∫
ΣR

∂u

∂ν
u ds =

∑
j∈N

∫
|x̃|=R

∂uj
∂ν

uj ds.

If 1 ≤ j ≤ J∗, then uj is a solution to a Helmholtz equation with positive wave number in R2 that
satisfies the Sommerfeld radiation condition due to (16) and it is well-known (see, e.g.,[CK12]) that
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this implies that Im
∫
|x̃|=R(∂uj/∂ν)uj ds ≥ 0 (the latter expression is a multiple of the L2-norm of the

far field pattern of uj). For j > J∗, uj is a bounded and hence exponentially decreasing solution to a
Helmholtz equation with negative wave number (this follows, e.g., from the estimates of the Hankel
functions in the proof of Theorem 5.2), such that Im

∫
|x̃|=R(∂uj/∂ν)uj ds → 0 as R → ∞. Choosing

R > 0 large enough, we conclude that

0 = ImBω(u, u) =

∫
Ωρ

ω2 Im(q)

c2(x3)
|u|2 dx+ Im

∫
ΣR

∂u

∂ν
u ds ≥ 0.

Thus, u vanishes on the open, nonempty set D. The unique continuation property for solutions to
∆u+ (ω2/c2(x3))(1 + q)u = 0, see [JK85, Th. 6.3, Rem. 6.7], implies that u vanishes in all of Ω.

Remark 6.3. (1) If the inhomogeneous medium described by the contrast q is replaced by an im-
penetrable obstacle D b Ωρ with either Dirichlet, Neumann or impedance boundary conditions, the
approach from the beginning of this section yields a variational problem for the total field restricted
to Ωρ \ D. For a Neumann or impedance boundary condition this problem is posed in H1

W (Ωρ \ D),
whereas for a Dirichlet boundary condition, the variational space additionally needs to incorporate ho-
mogeneous Dirichlet boundary conditions on ∂D. The existence and uniqueness results of Theorem 6.1
and Theorem 6.2(1) hold for those scattering problems in an analogous way.

(2) The G̊arding inequality from Theorem 6.1(1) implies that a conforming Galerkin scheme applied
to (32) converges if the sequence of discrete variational spaces is dense in H1

WΩρ.
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