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Abstract

We introduce an inside-outside duality approach for the determination of interior transmis-
sion eigenvalues of a possibly anisotropic dielectric electromagnetic scattering object using time-
harmonic electromagnetic far field data. To this end, we exploit a self-adjoint factorization of the
far field operator to link the electromagnetic interior transmission eigenvalues to the maximal or
minimal phase of the eigenvalues of the corresponding far field operator, depending whether the
sign of the contrast function is positive or negative.

1 Introduction

The propagation of time-harmonic electromagnetic waves in R3 is governed by Maxwell’s equations
for the electric and magnetic field E andH. Given a circular frequency ω > 0 and a dielectric medium
with electric permittivity ε > 0, constant magnetic permittivity µ > 0, and vanishing conductivity
σ > 0, linear and time-harmonic electromagnetic waves are governed by the differential equations

curlE − iωµ0H = 0 ,

curlH + iωεE = 0
in R3. (1)

Denoting the constant background permittivity by ε0 we introduce the wave number k := ω
√
ε0µ0,

the relative permittivity εr = ε/ε0, which allows to reduce the system (1) to

curl
(
ε−1

r curlH
)
− k2H = 0 in R3. (2)

We assume in the following that εr equals ε0 outside some bounded scatterer D ⊂ R3. Considering
the electromagnetic scattering problem governed by (2) and the Silver-Müller radiation condition
(detailed in the subsequent section) we note that this scattering problem is as usual linked to an
interior eigenvalue problem in D: In our context, this so-called interior transmission eigenvalue
problem consists in finding an eigenvalue k2 ∈ C and an eigenpair (u,w) such that

curl
(
ε−1

r curlu
)
− k2u = 0 in D and curl2w − k2w = 0 in D, (3)

subject to the constraint that the Cauchy data of u and v equal each other,

ν × (u− w)|∂D = 0 and ν × (ε−1
r curlu− curlw)

∣∣
∂D

= 0, (4)

where ν is the exterior unit normal to ∂D. In this paper we show a tight link between interior
transmission eigenvalues and the spectrum of the far field operator to the above-mentioned scattering
problem via a conditional inside-outside duality.
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To detail this duality statement, recall that whenever the contrast Q = I3 − ε−1
r is real-valued

then the far field operator Fk at wave number k > 0 to the above-mentioned scattering problem is
compact and normal. Thus, Fk possesses eigenvalues {λj(k)}j∈N that can be shown to lie on the
circle {|z − 8π2i/k| = 8π2/k} in the complex plane and tend to zero as j tends to ∞. Whenever
the contrast Q has a fixed sign in D then λj(k) tend to zero as j tends to ∞ either from the left
or from the right depending on the sign of the contrast. Given this setting, inside-outside duality
roughly speaking states that whenever some eigenvalue λj(k) tends to zero from the “wrong” side
as k → k0, then k0 > 0 is an interior transmission eigenvalue. Finally, under an implicit condition
on a given transmission eigenvalue k0 > 0 we also show that there exists an eigenvalue λj(k) of Fk
tending to zero from the “wrong” side as k → k0. We additionally transform this implicit condition
into an explicit one for the contrast and the wave number that holds true at least for the smallest
positive electromagnetic interior transmission eigenvalues if the contrast is large enough.

The latter result offers the possibility to determine at least some transmission eigenvalues from
multi-spectral far field data by inspecting, e.g., the behavior of the smallest or largest phase of the
eigenvalue of the far field operator (depending on the sign of the contrast Q). The knowledge of
interior transmission eigenvalues is in particular of importance in the context of parameter identifica-
tion for anisotropic materials from far field scattering data. Indeed, anisotropic material parameters
are not uniquely identified by such data without a-priori knowledge, even if one possesses multi-
frequency data [13, 1]. Such a-priori information can for instance be computed from transmission
eigenvalues since [2, 3] show that these eigenvalues provide upper and lower bounds on the norm of
the anisotropic material parameter.

The interior transmission eigenvalue problem is a non-selfadjoint and non-linear eigenvalue prob-
lem and it took about 20 years in between the first appearance of the problem in the literature [9, 7]
and the first existence results of finitely or infinitely many eigenvalues for general (non-spherical) ge-
ometries [23, 4]. The growing interest in this eigenvalue problem, parameter identification methods
exploiting transmission eigenvalues, and methods for their numerical computation is in particular
indicated by the numerous recent references in the review articles [5] and the special issue introduced
in [6].

Inside-outside duality is a well-known concept in billiard theory, see, e.g., [10]. A mathematically
sound proof of the above-sketched duality for an exterior Dirichlet scattering problem has been given
in [11]. The technique from the latter paper has been transferred to a scalar transmission problem
for the Helmholtz equation in [19] and to a scalar transmission problem with anisotropic material
coefficients in [21]. In this paper we actually follow the simplified approach from [20]. Let us further
point out that we use, at least in the first parts of the paper the notation from [17, Chapter 5] since
this allows to simplify the presentation by referring the certain parts of proofs in that reference.
We further note that our results are restricted to positive interior transmission eigenvalues and that
identification of complex transmission eigenvalues by an extension of the inside-outside duality is
an open problem. Finally, we emphasize that the interior transmission eigenvalue to the eigenvalue
problem (3–4) is by definition k, while some authors prefer to define k2 to be the eigenvalue.

To give a brief outline of the rest of the paper, we first detail the electromagnetic scattering
problem in the next Section 2. After rigorously defining transmission eigenvalues in Section 3 we
link them to the far field operator in Section 4. Section 5 contains the first part of the inside-outside
duality statement. After preparing some technical tools in Section 6 we prove the second part in
Section 7 under a condition that is verified for small transmission eigenvalues in Section 8.

Notation: By S2 = {x ∈ R3, |x| = 1} we denote the unit sphere in R3 and BR(x) is the
ball of radius R about x ∈ R3. For any bounded Lipschitz domain B ⊂ R3 the Hilbert space
H(curl, B) is defined by H(curl, B) :=

{
v ∈ L2(B,C3), curl v ∈ L2(B,C3)

}
; its inner product is

(v, w)H(curl,B) := (v, w)L2(B) + (curl v, curlw)L2(B). The closure of C∞0 (B,C3) in the norm of
H(curl, B) is H0(curl, B) = {v ∈ H(curl, B), ν × v = 0 on ∂B}. By abuse of notation, a duality
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pairing between the trace space of H(curl, B) and its dual (see, e.g., [22, Section 3.5.3]) will for sim-
plicity always be written as a boundary integral over ∂B. Next, H(div, B) = {v ∈ L2(B,C3), div v ∈
L2(B,C3)} is a Hilbert space for the inner product (v, w)H(curl,B) := (v, w)L2(B) + (div v,divw)L2(B)

and H(div0, B) is the set of functions v in H(div, B) such that div v = 0 in B. The closure of
C∞0 (B,C3) in the norm of H(div, B) is H0(div, B) = {v ∈ H(div, B), v · ν = 0 on ∂B}; we also
define H0(div0, B) = {v ∈ H(div0, B), v · ν = 0 on ∂B}. Further,

Hloc(curl,R3) :=
{
v : R3 → C3, v|B ∈ H(curl, B) for all balls B ⊂ R3

}
.

Recall moreover that the space of functions in H(curl, B)∩H(div, B) with vanishing tangential trace,

XN = {ψ ∈ H(curl, B) ∩H(div, B), ν × ψ = 0 on ∂B} ⊂ H0(curl, B), (5)

and norm ‖ψ‖XN = ‖ψ‖L2(B,C3) +‖ curlψ‖L2(B,C3) +‖ divψ‖L2(B) embeds compactly into L2(B,C3),
see, e.g., [22, Corollary 3.49].

2 Scattering from a Dielectric Medium

We consider the time-harmonic Maxwell’s equations to model scattering of an incident electromag-
netic wave from a non-magnetic dielectric medium modeled by space-dependent relative electric per-
mittivity εr. Moreover, we suppose that the support of I3 − εr is the closure of a bounded Lipschitz
domain D ⊂ R3 with connected complement R3 \D. The material parameter ε−1

r ∈ L∞(D,Sym(3))
takes values in the real-valued symmetric 3 × 3 matrices Sym(3) and is bounded from above and
below on R3, i.e., 0 < c 6 ξ

>
ε−1

r (x)ξ ∈ L∞(R3) for almost all x ∈ R3 and ξ ∈ C3. We denote the
corresponding contrast function by Q := I3 − ε−1

r ; obviously, the support of Q equals D. Note that
we write A < B whenever A,B ∈ Sym(3) satisfy ξ>(A−B)ξ < 0 for all ξ ∈ C3.

We have already derived in the introduction that the total magnetic field solves

curl
(
ε−1

r curlH
)
− k2H = 0 in R3. (6)

On interfaces where εr is discontinuous, the tangential components of the magnetic field H and of
ε−1

r curlH are continuous across the interface. In particular, if εr is discontinuous across ∂D, then

ν × [H]∂D = 0 and ν ×
[
ε−1

r curlH
]
∂D

= 0, (7)

where [·]∂D denotes the jump of a function across ∂D. Assume that an incident time-harmonic
electromagnetic plane wave

H i(x, θ; p) := p eik x·θ, x ∈ R3, where θ ∈ S2, p ∈ C3, and p · θ = 0,

with direction θ and polarization p propagates through the inhomogeneity D. Due to the different
material parameters inside D there arises a scattered electromagnetic wave Hs such that the total
field H = H i +Hs solves (6) and, moreover, Hs satisfies the Silver-Müller radiation condition

curlHs(x)× x̂− ikHs(x) = O
(
|x|−2

)
, as |x| → ∞, uniformly with respect to x̂ :=

x

|x|
∈ S2. (8)

Any solution v to the Maxwell’s equations curl curl v − k2v = 0 outside D that satisfies the latter
condition is called radiating in the sequel. Since H i solves curl2H i − k2H i = 0 in R3, the radiating
scattered field Hs is hence a solution to

curl
(
ε−1

r curlHs
)
− k2Hs = curl

(
Q curlH i

)
in R3. (9)
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For this and all subsequent scattering problems we consider weak solutions in Hloc(curl,R3). Before
introducing the corresponding weak formulation, let us introduce a more general source term on the
right of (9): For f ∈ L2(D,C3) we seek a weak radiating solution v ∈ Hloc(curl,R3) to

curl
(
ε−1

r curl v
)
− k2v = curl (Qf) in R3. (10)

Note that setting f = curlH i yields the original problem (9). The weak solution v ∈ Hloc(curl,R3)
thus needs to satisfy∫

R3

(
ε−1

r curl v · curlψ − k2v · ψ
)

dx =

∫
R3

Qf · curlψ dx ∀ψ ∈ H(curl,R3) (11)

with compact support and, additionally, the Silver-Müller radiation condition,

curl v(x)× x̂− ikv(x) = O
(
|x|−2

)
, as |x| → ∞, uniformly with respect to x̂ ∈ S2. (12)

Remark. (a) Choosing ψ = ∇ϕ to be a gradient field, the equation curl∇ϕ = 0 implies that∫
R3 v · ∇ϕ = 0 for all ϕ ∈ H1(R3) with compact support, i.e., div v = 0 in R3.

(b) The Silver-Müller radiation condition is well-defined for any weak solution v to (11): Outside
D the solution v solves curl2 v−k2v = 0 together with div v = 0; thus, the identity ∆ = ∇ div− curl2

implies that ∆v+ k2v = 0 and elliptic regularity results imply that v is a smooth function in R3 \D.

Using either a volume integral approach [15] or a variational formulation in involving the exterior
Calderon operator [22] it is possible to show that (11) can be reduced to a Fredholm problem, i.e.,
uniqueness implies existence of solution.

Assumption 1. We assume in the following that any solution to (11) for f ∈ L2(D,C3) is unique,
such that existence and continuous dependence of this solution follow from uniqueness. This assump-
tion is always satisfied if εr is globally Hölder continuous, since, under this smoothness assumption,
unique continuation results for Maxwell’s equations are applicable, see [25].

Every radiating solution v ∈ Hloc(curl,R3) to (11) has the asymptotic behavior

v(x) =
exp (ik|x|)

4π|x|
v∞(x̂) +O

(
|x|−2

)
, as |x| → ∞,

uniformly in all directions x̂ = x/|x| ∈ S2, involving the far field pattern v∞ : S2 → C3 of v. It is
well-known that v∞ is an analytic and tangential vector field on the unit sphere, i.e.,

v∞(x̂) · x̂ = 0 for all x̂ ∈ S2.

In particular, v∞ belongs to the space of square-integrable tangential vector fields

L2
t (S2) :=

{
v ∈ L2(S2,C3), v(x̂) · x̂ = 0 for a.e. x̂ ∈ S2

}
⊂ L2(S2,C3).

For the above-introduced incident plane wave H i(·, θ; p) the far field pattern H∞(·, θ; p) of Hs(·, θ; p)
depends both on the incident angle θ and the polarization p ∈ C. The far field patterns H∞(·, θ; p)
define the far field operator F : L2

t (S2)→ L2
t (S2), a linear integral operator defined by

(Fp) (x̂) :=

∫
S2
H∞(x̂, θ; p(θ)) dS(θ) for x̂ ∈ S2. (13)

The far field operator is linear since H∞ depends linearly on p, i.e. H∞(x̂, θ; p) = Ĥ∞(x̂, θ)p for
all p ∈ C3 with p · θ = 0 and Ĥ∞(x̂, θ) ∈ C3×3. Due to reciprocity relations, H∞ is moreover a
smooth function in both variables x̂ and θ which implies that F is a compact operator on L2

t (S2).
Additionally, since εr is real-valued the scattering problem in non-absorbing hence F is a normal
operator, see [8, Corollary 6.40]. Thus, F possesses a complete orthonormal eigensystem (λj , gj)j∈N
of eigenvalues λj ∈ C and eigenfunctions gj ∈ L2

t (S2). From [17] we additionally know that all λj lie
on the circle {λ ∈ C, |8π2i/k − λ| = 8π2/k} in the complex plane.
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3 The Herglotz Operator, its Range, and Transmission Eigenvalues

To establish a link between electromagnetic transmission eigenvalues and certain eigenvalues of the
far field operator F we will exploit a factorization of F based on the following linear, compact
Herglotz operator H : L2

t (S2)→ L2(D,C3), defined by

Hg = curlx vg|D , vg(x) :=

∫
S2

eik x·θg(θ) dS(θ) for x ∈ D, (14)

where vg is a so-called Herglotz wave function. Since g ∈ L2
t (S2) we note that vg is smooth and

divergence-free and thus solves both Maxwell’s equations curl2 vg − k2vg = 0 and the vectorial
Helmholtz equation ∆vg + k2vg = 0 in R3 in the classical sense. If vg vanishes in D, then analytic
continuation and [8, Theorem 3.15] applied to each component of vg implies that g vanishes, i.e., the
Herglotz operator H is injective.

Proposition 2. The adjoint H∗ : L2(D,C3)→ L2
t (S2) of the Herglotz operator is given by

(H∗ψ) (θ) = ik θ ×
∫
D
ψ(x)e−ik x·θ dx for θ ∈ S2.

Proof. Recall first that curl(ϕF ) = ∇ϕ × F + ϕ curlF for scalar functions ϕ and vector fields V .
Thus, for g ∈ L2

t (S2) it holds that curlx(exp(ik x · θ)g(θ)) = ikθ exp(ikx · θ) × g(θ). For arbitrary
ψ ∈ L2(D,C3) we thus obtain

(Hg, ψ)L2(D,C3) =

∫
D

(
curlx

∫
S2
g(θ) eik x·θ dS(θ)

)
ψ(x) dx

=

∫
D

∫
S2

curlx

(
g(θ) eik x·θ

)
dS(θ)ψ(x) dx

=

∫
S2
g(θ) (−ik) θ ×

∫
D
ψ(x)eik x·θ dx dS(θ) = (g, H∗ψ)L2

t (S2) .

For the next result we recall the notation

Φ(x, y) =
exp(ik|x− y|)

4π|x− y|
, for x, y ∈ R3, x 6= y,

for the radiating fundamental solution to the scalar Helmholtz equation in R3. The far field pattern
of x 7→ Φ(x, y) is well-known to be θ 7→ exp(−ik θ · y) and the far field pattern of x 7→ curlx Φ(x, y)
equals θ 7→ ik θ × exp(−ik θ · y), see, e.g. [8]. By linearity, this implies the following proposition.

Proposition 3. For ψ ∈ L2(D,C3) the function H∗ψ ∈ L2
t (S2) is the far field pattern v∞ to

v(x) = curlx

∫
D

Φ(x, y)ψ(y) dy, x ∈ R3.

The closure of the range of H in L2(D,C3) plays an important role in the sequel.

Lemma 4. For k > 0 we define the closed subspace

Xk =

{
w ∈ L2(D,C3),

∫
D
w (curl2 ψ − k2ψ) dx = 0 ∀ψ ∈ C∞0 (D,C3)

}
⊂ L2(D,C3). (15)

Then it holds that Xk = closureL2(D,C3)R(H).
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Proof. The definition of H in (14) implies that Hg = curl vg|D where both the Herglotz wave
function vg and its curl are smooth and entire solutions to Maxwell’s equations in R3. In particular,
two partial integrations imply that vg satisfies

∫
D(Hg) (curl2 ψ− k2ψ) dx = 0 for all ψ ∈ C∞0 (D,C3)

and g ∈ L2
t (S2). In consequence, R(H) ⊂ Xk.

To prove that Xk ⊂ closureL2(D,C3)R(H) we assume that there exists w0 ∈ Xk such that w0 is
orthogonal to all elements in the range of H, i.e.,

0 = (w0, Hg)L2(D,C3) = (H∗w0, g)L2
t (S2) ∀g ∈ L2

t (S2). (16)

By Proposition 3 we know that H∗w0 = v∞ is the far field pattern of the volume potential v =
curl

∫
D Φ(·, x)w0(x) dx in R3. Due to (16) the far field v∞ vanishes and Rellich’s lemma (see [8,

Theorems 2.14 and 6.10] yields that v = 0 in R3\D. By [15] the volume potential v for w0 ∈ L2(D,C3)
solves ∫

R3

[
curl v · curlψ − k2v · ψ

]
dx =

∫
D
w0 · curlψ dx (17)

for all ψ ∈ H(curl,R3) with compact support, while w0 ∈ Xk solves∫
D
w0 ·

(
curl2 ψ − k2ψ

)
dx = 0 ∀ψ ∈ C∞0 (D,C3).

Thus, choosing the test function in (17) as
(
curl2−k2

)
ψ for arbitrary ψ ∈ C∞0 (D,R3) the right-hand

side in (17) vanishes and
∫
R3

(
curl v · curl

(
curl2−k2

)
ψ − k2v ·

(
curl2−k2

)
ψ
)

dx = 0. This shows
that (curl2−k2)(curl2−k2)v = 0 holds in the distributional sense, i.e., in D′(R3,C3). Note that (17)
moreover implies that div v = 0. Exploiting the identity ∆ = ∇ div− curl2 together with Schwartz’s
theorem, we find that

(curl2−k2)(curl2−k2)v =(∇ div−∆− k2)(∇ div−∆− k2)v

=(∇ div−∆− k2)(−∆− k2)v = (∆ + k2)(∆ + k2)v = 0 in D′(R3,C3).

The operator (∆ + k2)(∆ + k2) = ∆2 + 2k2∆ + k4 is an elliptic differential operator of order four.
Thus, Weyl’s lemma for distributional solutions to elliptic partial differential equations with constant
coefficients (see, e.g., [24, Corollary of Theorem 8.12]) applied to each of its components shows that
v ∈ C∞(R3,C3) is a smooth and compactly supported solution of (∆ + k2)(∆ + k2)v = 0 in R3.
We multiply this equation by v, integrate first over R3 and then twice by parts, and obtain that
(∆ + k2)v = 0 in R3. Since v vanishes outside D, the analyticity of solutions the homogeneous
Helmholtz equation shown in [8, Theorem 2.2] implies that v = 0 in all of R3.

By (17), the fact that v vanishes implies that w0 satisfies
∫
D w0 · curlψ dx = 0 for all ψ ∈

H(curl, D). Since w0 ∈ Xk is divergence-free, Theorem 3.5 in [12] shows the existence of a vector
potential V0 ∈ H(curl, D) such that w0 = curlV0. Choosing ψ = V0 hence yields

∫
D |w0|2 dx =∫

D w0 · curlV0 dx = 0. In consequence, every vector in Xk orthogonal to R(H) vanishes, which
implies the claimed identity.

Lemma 5. For k > 0 it holds that

Xk =

{
w ∈ L2(D,C3),

∫
D
w (curl2 ψ − k2ψ) dx = 0 ∀ψ ∈ H0(curl, D) s.th. curlψ ∈ H0(curl, D)

}
.

Proof. Lemma A.1 in [14] shows that functions in C∞0 (D,C3) are dense in {ψ ∈ H0(curl, D), curlψ ∈
H0(curl, D)}, equiped with the norm ‖ψ‖ = ‖ψ‖H(curl,D)+‖ curlψ‖H(curl,D). Thus, the representation
of Xk from Lemma 4 equals the claimed one by a density argument.

Using the space Xk we rigorously define interior transmission eigenvalues.
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Definition 6. The wave number k > 0 is an interior transmission eigenvalue if a non-trivial eigenpair
(v, w) ∈ H0(curl, D)×Xk exists that satisfies

curl
(
ε−1

r curl v
)
− k2v = curl (Qw) in D, curl2w − k2w = 0 in D, and

ν × ε−1
r curl v = ν ×Qw on ∂D.

(18)

The differential equations and the boundary conditions are understood in a variational sense, i.e.,∫
D

[
ε−1

r curl v · curlψ − k2v · ψ
]

dx =

∫
D
Qw · curlψ dx ∀ψ ∈ H(curl, D). (19)

Remark 7. In contrast to the formal introduction of transmission eigenvalues in (3), formulated
using u and w, Definition 6 is formulated in terms of v = u − w and curlw. Of course, both
formulations lead to precisely the same eigenvalues.

Lemma 8. The eigenpair (v, w) ∈ H0(curl, D)×Xk belongs to H1
0 (D,C3)∩H0(div0, D)×H(div0, D).

Proof. Since a function w ∈ Xk belongs to L2(D,C3) and satisfies [curl2−k2]w = 0 in the distribu-
tional sense, the latter equation in particular holds in L2(D,C3). Since div curl = 0 we deduce that
divw = 0, i.e., w ∈ H(div0, D).

Choosing the test function ψ ∈ H(curl, D) in (19) to be a gradient field ∇ϕ for ϕ ∈ H1(D) we
note that v ∈ H0(curl, D) is divergence-free and that v · ν = 0 on ∂D: Indeed, a partial integration
shows that

0 =

∫
D
v · ∇ϕdx =

∫
∂D

(v · ν)ϕdS ∀ϕ ∈ H1(D).

Thus, v ∈ H0(curl, D) ∩H0(div, D) = H1
0 (D,C3) due to Lemma 2.5 in [12].

4 Linking Transmission Eigenvalues with the Far Field Operator

The characterization of transmission eigenvalues based on inside-outside duality relies on linking the
interior eigenvalues with the far field operator F , more precisely, with a particular factorization of
F . To state this factorization we introduce the operator

T = Tk : L2(D,C3)→ L2(D,C3), Tkf := Q (f + curl v|D) , (20)

where v ∈ Hloc(curl,R3) is the unique radiating weak solution to curl
(
ε−1

r curl v
)
− k2v = curl (Qf)

in R3, that is, for all ψ ∈ H(curl,R3) with compact support, v satisfies∫
R3

[
ε−1

r curl v · curlψ − k2v · ψ
]

dx =

∫
R3

Qf · curlψ dx (21)

together with the Silver-Müller radiation condition (12).

Assumption 9. From now on, we assume that Q ∈ L∞(D,Sym(3)) either satisfies Q(x) ≥ c0I3 or
Q(x) ≤ −c0I3 for some c0 > 0 for almost all x ∈ D. We abbreviate these conditions as sign(Q) = +1
or sign(Q) = −1. In both cases, the inverse matrix Q(x)−1 exists for almost every x ∈ D.

Theorem 10. (a) For k > 0 the factorization F = H∗TH holds.
(b) If v ∈ Hloc(curl,R3) is the radiating weak solution to (21) then the mapping f 7→ curl v|D is

compact from L2(D,C3) into L2(D,C3).
(c) For k > 0, f ∈ L2(D,C3), and v defined as the radiating weak solution to (21) it holds that

Im (Tf, f)L2(D,C3) =
k

(4π)2

∫
S2
|v∞|2 dS > 0. (22)
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Proof. In [17, Theorem 5.10], a slightly different factorization is shown for the isotropic case where
ε−1

r = 1 − q for a real-valued contrast q and that proof can be straightforwardly adapted to our
setting. For the same isotropic setting, parts (b) and (c) are shown in [18, Theorem 5.12(d,e)]
and [18, Theorem 5.12(a)], respectively, and those proofs can be adapted for our setting due to
Assumption 9.

The next theorem yields a first characterization of positive interior transmission eigenvalues using
the above-introduced operator T = Tk. At this point, the k-dependence of the operators Tk, H = Hk

and F = Fk as well as the dependence of Xk on the wave number becomes important. For this reason
we denote this dependence explicitly from now on.

Theorem 11. (a) If the wave number k > 0 is an interior transmission eigenvalue for the eigenpair
(v, w) ∈ H0(curl, D)×Xk then w 6= 0 satisfies Im (Tkw,w)L2(D,C3) = 0.

(b) If w ∈ Xk \ {0} satisfies Im (Tkw,w)L2(D,C3) = 0 the wave number k > 0 is an interior
transmission eigenvalue and there is v ∈ H0(curl, D) such that (v, w) is the corresponding eigenpair.

Proof. (a) If k > 0 is a transmission eigenvalue with eigenpair (v, w) we extend v from D to all of
R3 by zero. Due to (19) the extension satisfies∫

R3

[
ε−1

r curl v · curlψ − k2v · ψ
]

dx =

∫
D
Qw · curlψ dx (23)

for all ψ ∈ H(curl,R3) with compact support. In particular, the definition of Tk in (20) shows that
Tkw = Q(w + curl v) and since v∞ = 0 we deduce from Theorem 10(c) that

Im (Tkw,w) =
k

(4π)2
‖v∞‖2L2

t (S2) = 0.

(b) If w ∈ Xk \{0} satisfies Im (Tkw,w)L2(D,C3) = 0 then define v ∈ Hloc(curl,R3) to be the radiating
weak solution to (21). Theorem 10(c) states that

Im (Tw,w)L2(D,C3) =
k

(4π)2

∫
S2
‖v∞‖2L2

t (S2),

and hence the (tangential) far field pattern v∞ vanishes on S2. Thus, Rellich’s Lemma (see [8,
Theorem 6.10]) implies that v = 0 in the exterior of D and (21) shows that∫

D

[
ε−1

r curl v · curlψ − k2v · ψ
]

dx =

∫
D
Qw · curlψ dx ∀ψ ∈ H(curl, D).

Since v vanishes outside D we hence obtained a transmission eigenpair (v, w) ∈ H0(curl, D)×Xk.

Corollary 12. The wave number k > 0 is an interior transmission eigenvalue if and only if there is
w ∈ Xk \ {0} such that (Tkw,w)L2(D,C3) = 0.

Proof. If (Tkw,w)L2(D,C3) = 0 then Im (Tkw,w)L2(D,C3) = 0 and Theorem 11 implies the claim.
Moreover, if k > 0 is an interior transmission eigenvalue then Im (Tkw,w)L2(D,C3) = 0 for w ∈ Xk\{0}
due to Theorem 11. As in the proof of the latter theorem we exploit that Tkw = Q (w + curl v|D)
where v ∈ Hloc(curl,R3) ∩H0(curl, D) solves (23), i.e.,∫

R3

[
curl v · curlψ − k2v · ψ

]
dx =

∫
D
Q(w + curl v) · curlψ dx ∀ψ ∈ H(curl, D). (24)

8



Since w ∈ Xk belongs to the closure of R(H) in L2(D,C3) there exists a sequence {gj}j∈N ⊂ L2
t (S2)

such that wj = H(gj)→ w in L2(D,C3) as j →∞. We choose the test function ψ in (24) as curlwj ,∫
D
Q(w + curl v) · curl2wj dx =

∫
D

[
curl v · curl2wj − k2v · curlwj

]
dx.

and exploit the equation curl2wj = k2wj in D and integration by parts to find that∫
D
Q(w + curl v) · wj dx =

∫
D

[curl v · wj − v · curlwj ] dx =

∫
∂D

(ν × v) · wj dS = 0

because v ∈ H0(curl, D). As j →∞ we obtain first that
∫
DQ(w+ curl v) ·w dx = 0 and second that

(Tw,w)L2(D,C3) =

∫
D
Q(w + curl v) · w dx = 0.

In the end of Section 2 we already mentioned that the eigenvalues λj = λj(k) of the far field
operator F = Fk lie on a circle with radius 8π2/k centered at 8π2i/k. Since F is compact on L2

t (S2)
these eigenvalues necessarily converge to zero as j →∞. We next show that if the contrast function
Q : D → Sym(3) has a fixed sign, the λj converge clockwise (i.e. from the right) or counter-clockwise
(i.e. from the left) to zero as j →∞ (see Figure 1).

Theorem 13. Assume that k > 0 is no interior transmission eigenvalue. If sign(Q) = ±1, then
Re (λj) ≷ 0 if j ∈ N is large enough.

Proof. The claim follows from the factorization of the far field operator F = H∗TH, the orthonor-
mality of its eigenfunctions gj ∈ L2

t (S2), and the fact that T is coercive up to a compact perturbation.
These properties allow to prove the claim along the lines of, e.g., [17][Theorem 1.23], see also Section
5.4 in the same reference and Lemma 4.1 in [19].

If the far field operator Fk is not injective, then it is easy to show that the corresponding wave
number is a transmission eigenvalue. Thus, if we assume that k > 0 is no interior transmission
eigenvalue, then F is injective and all eigenvalues λj are non-zero and possess a unique polar repre-
sentation,

λj = rj exp
(
iϑj
)
, with rj > 0 and ϑj ∈ (0, π).

Theorem 13 directly determines the behavior of the phases ϑj ,

lim
j→∞

ϑj =

{
0, if sign(Q) = +1,

π, if sign(Q) = −1.

Thus, if sign(Q) = +1 we can define ϑ+ = maxj∈N ϑj and denote the corresponding eigenvalue of F
with the largest phase by λ+ = r+ exp(iϑ+); if sign(Q) = −1 we set ϑ− = minj∈N ϑj and denote the
corresponding eigenvalue by λ− = r− exp(iϑ−) (see Figure 1).

Theorem 14. Assume that k > 0 is no interior transmission eigenvalue. If sign(Q) = +1 or if
sign(Q) = −1 it holds that

cotϑ+ = min
w∈Xk\{0}

Re (Tkw,w)L2(D,C3)

Im (Tkw,w)L2(D,C3)
or cotϑ− = max

w∈Xk\{0}

Re (Tkw,w)L2(D,C3)

Im (Tkw,w)L2(D,C3)
, respectively.

Remark. If k > 0 is no interior transmission eigenvalue, the denominator in the latter expressions
is strictly positive due to Theorem 11 .
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Im

i 8π
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0

λ+ := λ1

λ2

λ3

λj−1

λj

λj+1

ϑ+

r+

Figure 1: If sign(Q) = +1 the eigenvalues λj of F converge clockwise to zero and the eigenvalue with
the largest phase is λ+ = r+ exp(iϑ+).

Proof. Expressing F by his eigensystem, Fg =
∑

j∈N λj(g, gj)L2
t (S2)gj , we note that

(Fg, g)L2
t (S2) =

∑
j∈N

λj
∣∣(g, gj)L2

t (S2)

∣∣2 for g ∈ L2
t (S2).

From Euler’s identity we know that Re (λj) = rj cos(ϑj) and Im (λj) = rj sin(ϑj). Furthermore,
the function h(α) := cos(α)/ sin(α) = cot(α) is a strictly monotonically decreasing function in the
interval (0, π). An application of [20, Lemma 4] thus shows that

Re (Fg, g, )L2
t (S2)

Im (Fg, g)L2
t (S2)

=

∑
j∈N Re (λj)|(g, gj)|2∑
j∈N Im (λj)|(g, gj)|2

=

∑
j∈N cos(ϑj)rj |(g, gj)|2∑
j∈N sin(ϑj)rj |(g, gj)|2

6 max
g∈L2

t (S2)

∑
j∈N cos(ϑj)|(g, gj)|2∑
j∈N sin(ϑj)|(g, gj)|2

=
cos(ϑ−)

sin(ϑ−)
= cot(ϑ−) <∞

if sign(Q) = −1. Lemma 4 in [20] moreover shows that the latter inequality becomes an equality
if and only if g = g− is an eigenfunction of the eigenvalue λ−. If sign(Q) = +1 the claim follows
analogously. Finally, because of the factorization of F = H∗TH we obtain

(Fg, g)L2
t (S2) = (H∗THg, g)L2

t (S2) = (THg,Hg)L2(D,C3) = (Tw,w)L2(D,C3) with w = Hg ∈ Xk.

Since the range of H = Hk is by definition dense in Xk this implies the claim.

5 Extremal Phases and Transmission Eigenvalues

Since the representation of the extremal phases ϑ± in Theorem 14 relies on the k-depended spaces
Xk we will from now on explicitly denote the dependence of the eigenvalues λj = λj(k) and the
extremal phases ϑ± = ϑ±(k) of the far field operator Fk on the wave number k > 0 explicitly.

The next result shows the first part of the inside-outside duality holds without further assump-
tions: Whenever an eigenvalue corresponding to the smallest or largest phase tends to zero from the
wrong side as k → k0 the limiting wave number k0 is a transmission eigenvalue.

Theorem 15. Choose k0 > 0 such that I := (k0−ε, k0+ε)\{k0} contains no transmission eigenvalue.
If it holds that

lim
I3k→k0

ϑ+(k) = π and sign(Q) = +1, or if lim
I3k→k0

ϑ−(k) = 0 and sign(Q) = −1, (25)

then k0 is an interior transmission eigenvalue.
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Proof. We merely treat the case that sign(Q) = −1; the case of a positive contrast can be treated
analogously. Assuming that k0 is no transmission eigenvalue, Theorem 14 implies that

cotϑ−(k) = max
w∈Xk

Re (Tkw,w)L2(D,C3)

Im (Tkw,w)L2(D,C3)
−→∞ as k → k0, k ∈ I.

Thus, there is a sequence {kj}j∈N ⊂ I and functions {wj}j∈N ⊂ Xkj with ‖wj‖L2(D,C3) = 1 such that
kj → k0,

0 < Im (Tkjwj , wj)L2(D,C3) → 0 as j →∞, and Re (Tkjwj , wj)L2(D,C3) > 0 (26)

for sufficiently large j. Let vj ∈ Hloc(curl,R3) be the corresponding radiating weak solution to (11),∫
R3

[
(I3 −Q) curl vj · curlψ − k2

j vj · ψ
]

dx =

∫
R3

Qwj · curlψ dx, (27)

for all ψ ∈ H(curl,R3) with compact support. Since the sequence wj is bounded, there exists a weakly
convergent subsequence wj ⇀ w0 in L2(D,C3); by abuse of notation, we denote this subsequence
again by {wj}. The weak limit w0 belongs to Xk0 and the solutions vj to (27) converge weakly as
well: If v0 ∈ Hloc(curl,R3) denotes the solution to (27) when wj is replaced by w0, then vj ⇀ v0 in
H(curl, B) for every ball B ⊂ R3. Plugging in f = wj into (22) we deduce that

(4π)2 Im (Tkjwj , wj)L2(D,C3) = kj ‖v∞j ‖2L2(S2).

The left-hand side tends to zero by (26) and the right-hand side to k0‖v∞0 ‖2L2(S2). Thus, v∞0 = 0

and Rellich’s Lemma implies that v0 vanishes in the exterior of D, see [8, Theorem 6.10]. Thus,
(v0, w0) ∈ H0(curl, D)×Xk0 satisfy the transmission eigenvalue problem (18–19).

Under the assumption that k0 is no interior transmission eigenvalue we conclude that w0 and v0

vanish in D, i.e., (vj , wj) ⇀ 0. Exploiting that Qwj = Twj −Q curl vj we infer that

(Tkjwj , wj)L2(D,C3) = (Tkjwj , Q
−1Tkjwj)L2(D,C3) − (Tkjwj , curl vj)L2(D,C3)

= (Q−1Tkjwj , Tkjwj)L2(D,C3) −
∫
D
Q(wj + curl vj) · curl vj dx

= (Q−1Tkjwj , Tkjwj)L2(D,C3) −
∫
|x|<R

[
| curl vj |2 − k2

j |vj |2
]

dx

−
∫
|x|=R

(x̂× curl vj) · vj dS,

where we choose R > 0 large enough such that D ⊂ BR(0). Under the latter condition, vj is a
smooth function outside D and mappings wj 7→ vj ||x|=R and wj 7→ [x̂× curl vj ]||x|=R are compact
from L2(D,C3) into, e.g., L2(∂BR(0),C3). Consider now the real part of the latter equation for
(Tkjwj , wj): Since Re (Tkjwj , wj)L2(D,C3) > 0 for j large enough and sign(Q) = −1,∫

|x|<R
| curl vj |2 dx = −Re (Tkjwj , wj)L2(D,C3) +

∫
D
Q−1Tkjwj · Tkjwj dx

+

∫
|x|<R

k2
j |vj |2 dx− Re

∫
|x|=R

(x̂× curl vj) · vj dS

6
∫
|x|<R

k2
j |vj |2 dx− Re

∫
|x|=R

(x̂× curl vj) · vj dS. (28)
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The second term in (28) tends to zero since wj ⇀ 0 and wj 7→ (x̂ × curl vj) · vj is compact
from L2(D,C3) into L1(∂BR(0),C3). Concerning the first term in (28), recall that vj ⇀ 0 in
H(curl, BR(0)) and that vj ∈ H(div0, BR(0)). Since the space H(curl, BR(0)) ∩ H(div0, BR(0)),
equipped with the norm of H(curl, D), is compactly embedded in L2(BR(0),C3) we obtain that
vj → 0 strongly in L2(BR(0),C3), see [22, Theorem 4.7]. In consequence, the right-hand side in (28)
tends to zero, which implies that vj converges strongly to zero in H(curl, BR(0)) for arbitrarily
large R > 0. From (27) we deduce that wj → 0 in L2(D,C3), which contradicts the assumption
‖wj‖L2(D,C3) = 1. Thus, the assumption that k0 is no interior transmission eigenvalue was wrong.

6 The Orthogonal Projection onto Xk

In Theorem 15 we showed that whenever the smallest or largest phase tends to zero or π, respectively,
then the limiting wave number is a transmission eigenvalue. The reciprocal result is more difficult to
prove. A crucial tool in our analysis is a projection Pk onto Xk ⊂ L2(D,C3) that we will construct
in this section. To this end, we introduce

W := {ψ ∈ H0(curl, D) ∩H0(div, D), curlψ ∈ H0(curl, D) ∩H0(div, D)}
(∗)
=
{
ψ ∈ H1

0 (D,C3), curlψ ∈ H1
0 (D,C3)

}
with norm ‖ψ‖W := ‖ψ‖H(curl,D) + ‖divψ‖L2(D,C3) + ‖ curl2 ψ‖L2(D,C3). The equality (∗) is due to
Lemma 2.5 in [12] stating that H0(div, D) ∩H0(curl, D) = H1

0 (D,C3).

Lemma 16. For k > 0 there is c > 0 such that ‖(curl2−k2)ψ‖2L2(D,C3) + ‖ divψ‖2L2(D,C3) > c‖ψ‖2W
for all ψ ∈W .

Proof. Assume, on the contrary, that there is no such constant c > 0. Then there exists a sequence
{ψj}j∈N ⊂ W such that ‖ψj‖W = 1 and ‖(curl2−k2)ψj‖L2(D,C3) → 0 and ‖ divψj‖L2(D,C3) → 0 as
j →∞. We choose a weakly convergent subsequence, also denoted by {ψj}, such that ψj ⇀ ψ ∈W
weakly inW . SinceW ⊂ H1

0 (D,C3) the compact embedding of H1
0 (D,C3) in L2(D,C3) implies that

ψj → ψ in L2(D,C3). As ‖(curl2−k2)ψj‖L2(D,C3) → 0 we moreover obtain that curl2 ψj converges
strongly in L2(D,C3). Since the only possible limit equals curl2 ψ the limit equation (curl2−k2)ψ = 0
holds in L2(D,C3). Since ψ ∈W , the Stratton-Chu formula [22, Theorem 9.2] implies that

ψ = − curl

∫
∂D

(ν × ψ(y))Φ(·, y) dS − 1

k2

∫
∂D

(ν × curlψ(y))Φ(·, y) dS = 0 in D,

because the tangential trace of ψ ∈ H1
0 (D,C3) and curlψ ∈ H1

0 (D,C3) vanishes. We already saw
above that divψj → 0 in L2(D,C3) and deduce that ‖ψj‖W → ‖ψ‖W = 0 as j → ∞, contradicting
our assumption that ‖ψj‖W = 1 for all j ∈ N.

From now on we adopt the following assumption on D to avoid the appearance of cohomology
spaces in the Helmholtz decomposition when defining the projection Pk, cf., e.g., [22, Section 3.7].

Assumption 17. D is a Lipschitz domain with connected complement and each connected component
of D is simply connected. In particular, the boundary of each connected component is connected.

Due to the Helmholtz decomposition (see, e.g., [22, Theorem 3.45]) and the geometric Assump-
tion 17, a function g ∈ L2(D,C3) can be decomposed as g = curlAg+∇pg with a uniquely determined
vector potential Ag ∈ H(curl, D)∩H(div0, D) such that Ag ·ν = 0 on ∂D and a unique scalar poten-
tial pg ∈ H1

0 (D). Moreover, both Ag and pg depend continuously on g ∈ L2(D,C3) in their natural
norms. This allows to define the operator Pk for k > 0 by

Pk : L2(D,C3)→ L2(D,C3), Pkg := g −
(
curl2−k2

)
Âg −∇pg, (29)
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where Âg ∈W solves the following variational problem for all ψ ∈W ,∫
D

(
curl2−k2

)
Âg ·

(
curl2−k2

)
ψ dx+

∫
D

div Âg · divψ dx =

∫
D

curlAg ·
(
curl2−k2

)
ψ dx. (30)

Lemma 18. (a) The mapping Pk : L2(D,C3) → Xk is well-defined and represents the orthogonal
projection from L2(D,C3) onto Xk. The function Âg ∈W , defined in (30), is divergence-free and∫

D

(
curl2−k2

)
Âg ·

(
curl2−k2

)
ψ dx =

∫
D

curlAg ·
(
curl2−k2

)
ψ dx ∀ψ ∈W. (31)

(b) For g ∈ L2(D,C3) the function k 7→ Pkg from R>0 into L2(D,C3) is continuously differentiable.

Proof. (a) The variational problem (30) is well-posed as the sesquilinear form on the right of (30)
is coercive on W due to Lemma 16. Since curlAg is bounded in term of g ∈ L2(D,C3) the solution
Âg ∈W to (30) is hence uniquely defined and bounded in terms of g as well.

We further show that Âg is divergence-free: Plugging in ∇ϕ for ϕ ∈ C∞0 (D) into (30) we exploit
that

∫
D curl2 Âg · ∇ϕdx = 0 by partial integration and obtain that k4

∫
D Âg · ∇ϕdx +

∫
D div Âg ·

div∇ϕdx = 0 for all ϕ ∈ C∞0 (D). The Helmholtz decomposition Âg = curlA+∇p with p ∈ H1
0 (D)

implies that ∆p = div Âg ∈ L2(D), i.e., p ∈ H1
0,∆(D) = {q ∈ H1

0 (D), ∆q ∈ L2(D)}. Arguing as
in [22, Chapter 7.4], we find that

k4

∫
D

(curlA+∇p) · ∇ϕdx+

∫
D

∆p · div∇ϕdx = 0 ∀ϕ ∈ C∞0 (D).

Again, partial integration shows that
∫
D curlA · ∇ϕdx = 0, that is, p ∈ H1

0,∆(D) solves∫
D

(∆p− k4p)∆ϕdx = 0 ∀ϕ ∈ C∞0 (D).

Thus, p ∈ H1
0,∆(D) satisfies −∆p = −k4p in D and p is an eigenfunction of −∆ for a negative

eigenvalue. The negative Dirichlet Laplacian is however well-known to be a positive operator which
implies first that p necessarily vanishes and second that Âg = curlA is a divergence-free function
that satisfies (31).

To check that Pk maps into Xk we choose g ∈ L2(D,C3) and consider w = Pkg = g −
(curl2−k2)Âg −∇pg = curlAg − (curl2−k2)Âg. Due to (31),∫

D
w ·
(
curl2−k2

)
ψ dx =

∫
D

(
curlAg − (curl2−k2)Âg

)
·
(
curl2−k2

)
ψ dx = 0 ∀ψ ∈W.

Since C∞0 (D,C3) ⊂W , Lemma 4 implies that w ∈ Xk.
To check that Pk is a projection we choose w ∈ Xk and recall from Lemma 8 that w is divergence-

free. Hence, the scalar potential pw ∈ H1
0 (D) from the Helmholtz decomposition w = curlAw +∇pw

of w vanishes since it is a weak solution to the Laplace equation in D with homogeneous Dirichlet
boundary data. In consequence, the right-hand side of (30) vanishes,∫

D
curlAw ·

(
curl2−k2

)
ψ dx =

∫
D
w ·
(
curl2−k2

)
ψ dx = 0

for all ψ ∈ W since, as above, by definition of W it holds that ψ ∈ H0(curl, D) and curlψ ∈
H0(curl, D) and Lemma 5 states that the latter integral vanishes for w ∈ Xk. Thus, the solution
Âw ∈ W to (30) vanishes and Pkw = w, i.e., Pk is a projection onto Xk. This projection is even
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orthogonal: Consider w ∈ Xk and g ∈ L2(D,C3) with Helmholtz decomposition g = curlAg +∇pg,
where again pg ∈ H1

0 (D). Since w ∈ Xk is divergence-free to obtain and since Âg ∈W it follows that(
Pkg − g, w

)
L2(D,C3)

= −
(
∇pg, w

)
L2(D,C3)

−
(
(curl2−k2)Âg, w

)
L2(D,C3)

= 0.

(b) We note that k 7→ Pkg is a differentiable function for every g ∈ L2(D,C3) since

P ′kg :=
d

dk
(Pkg) =

d

dk

[
w − (curl2−k2)Âg +∇pg

]
= −(curl2−k2)Â′g + 2kÂg,

where Âg ∈W solves (30) and Â′g := dÂg/dk ∈W solves∫
D

(curl2−k2)Â′g · (curl2−k2)ψ dx+

∫
D

div Â′g · divψ dx = 2k

∫
D
Âg · (curl2−k2)ψ dx

+ 2k

∫
D

(curl2−k2)Âg · ψ dx− 2k

∫
D

curlAg · ψ dx ∀ψ ∈W.

The latter formula for Â′g follows from the polynomial dependence on k of the left- and right-hand
side of the coercive variational formulation (30). The above proof that Âg is divergence-free transfers
to Â′g which shows that Â′g solves∫

D
(curl2−k2)Â′g · (curl2−k2)ψ dx = 2k

∫
D
Âg · (curl2−k2)ψ dx

+ 2k

∫
D

(curl2−k2)Âg · ψ dx− 2k

∫
D

curlAg · ψ dx ∀ψ ∈W. (32)

7 Inside-Outside Duality

In this section, we apply the projection Pk from (29) to show that under a certain condition the
reciprocal result to Theorem 15 holds: If k0 > 0 is an interior transmission eigenvalue, then the
smallest or largest phase tends to zero or π, respectively. Together, these two statements yield the
so-called inside-outside duality. We emphasize that our results merely show that this duality holds
under certain conditions. While these conditions are not explicitly related to the contrast Q in this
section, in the subsequent section we will derive explicit conditions on the contrast such that the
duality holds at least for the smallest positive interior transmission eigenvalues.

Theorem 19. Let be k0 > 0 be a transmission eigenvalue and w0 ∈ Xk0 such that w0 6= 0 and
(Tk0w0, w0)L2(D,C3) = 0. Choose ε > 0 such that (k0 − ε, k0 + ε) contains no other transmission
eigenvalue. If k 7→ (TkPkw0, Pkw0)L2(D,C3) is differentiable in k at k = k0 and if the derivative

α′(k0) :=
d

dk
(TkPkw0, Pkw0)L2(D,C3)

∣∣∣∣
k=k0

∈ R \ {0}

is real and non-zero, then it holds for sign(Q) = +1 that

lim
k0−ε>k↗k0

ϑ+(k) = π if α′(k0) > 0 and lim
k0+ε<k↘k0

ϑ+(k) = π if α′(k0) < 0

and for sign(Q) = −1 that

lim
k0+ε>k↘k0

ϑ−(k) = 0 if α′(k0) > 0 and lim
k0−ε>k↗k0

ϑ−(k) = 0 if α′(k0) < 0.
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Proof. We merely prove the claim in case that sign(Q) = −1 since the case of a positive contrast can
be treated analogously. Choose ε > 0 such that I := (k0−ε, k0 +ε) contains no interior transmission
eigenvalue different from k0. In Theorem 14 we saw that for k ∈ I \ {k0} it holds that

cotϑ−(k) = max
w∈Xk\{0}

Re (Tkw,w)L2(D,C3)

Im (Tkw,w)L2(D,C3)
= max

g∈L2(D,C3)\{0}

Re (TkPkg, Pkg)L2(D,C3)

Im (TkPkg, Pkg)L2(D,C3)
.

Define α(k) := (TkPkw0, Pkw0)L2(D,C3) for k ∈ I and note that α(k0) = (Tk0w0, w0)L2(D,C3) vanishes
by Theorem 11 since k0 is a transmission eigenvalue. Thus, Taylor’s theorem implies that

α(k) = α(k0) + α′(k0)(k − k0) + r(k) = α′(k0)(k − k0) + r(k) where r(k) = o(|k − k0|) as k → k0.

Since α′(k0) is real and Im (α(k)) = Im (TkPkw0, Pkw0)L2(D,C3) > 0 for k ∈ I \{k0} by Theorem 10(c)
we obtain that

cotϑ−(k) >
Re (TkPkw0, Pkw0)L2(D,C3)

Im (TkPkw0, Pkw0)L2(D,C3)
=
α′(k0) (k − k0) + Re (r(k))

Im (r(k))
, k ∈ I \ {k0}.

If α′(k0) > 0 and if k0 + ε > k ↘ k0 then α′(k0) (k− k0) > 0 tends to zero linearly whereas Re (r(k))
and Im (r(k)) both tend to zero faster than linearly in k − k0. In consequence, cotϑ−(k) → ∞ as
k0 + ε > k ↘ k0, i.e., ϑ−(k)→ 0. The same technique applies in case that α′(k0) < 0.

Corollary 20 (Conditional Inside-Outside Duality). If there exist wave numbers {kj}j∈N ⊂ R>0 such
that kj → k0 > 0, kj 6= k0, and ϑ+(kj)→ π or ϑ−(kj)→ 0 as j →∞ in case that sign(Q) = +1 or
sign(Q) = −1, respectively, then k0 is an interior transmission eigenvalue.

If k0 > 0 is an interior transmission eigenvalue such that the derivative α′(k0) is non-zero, then
there exists {kj}j∈N ⊂ R>0 such that kj → k0 > 0, kj 6= k0, and ϑ+(kj) → π or ϑ−(kj) → 0 as
j →∞ in case that sign(Q) = +1 or sign(Q) = −1, respectively.

Proof. Due to Theorems 15 and 19 it merely remains to show that k 7→ (TkPkw0, Pkw0)L2(D,C3) is
differentiable at k = k0, which will be shown independently in Lemma 22 below.

The remaining crucial task is hence to compute the derivative α′(k0) from the last theorem.
Before doing so we show the following auxiliary result.

Lemma 21. Assume that k0 > 0 is an interior transmission eigenvalue with eigenfunction (v0, w0) ∈
H0(curl, D)×Xk0. Then the mapping k 7→ (Tkw0, w0)L2(D,C3) is differentiable in k at k = k0 and

d

dk
(Tkw0, w0)L2(D,C3)

∣∣∣∣
k=k0

= 2k0

∫
D
|v0|2 dx. (33)

Proof. Define vk for k > 0 as the unique radiating solution to the variational formulation∫
R3

[
(I3 −Q) curl vk · curlψ − k2vk · ψ

]
dx =

∫
D
Qw0 · curlψ dx ∀ψ ∈ H(curl,R3) (34)

with compact support and note that v0 = vk0 ∈ Hloc(curl,R3) ∩H0(curl, D). Since this variational
problem depends polynomially on k and since vk0 ∈ H0(curl, D) we note that the derivative v′0 :=
dvk/dk|k=k0

of vk with respect to k > 0 at k = k0 satisfies∫
D

[
(I3 −Q) curl v′0 · curlψ − k2

0v
′
0 · ψ

]
dx = 2k0

∫
D
v0 · ψ dx ∀ψ ∈ H(curl, D). (35)
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Now we compute the derivative of k 7→ (Tkw0, w0)L2(D,C3) with respect to k at k = k0:

d

dk
(Tkw0, w0)L2(D,C3)

∣∣∣∣
k=k0

=
d

dk
(Q(w0 + vk|D), w0)L2(D,C3)

∣∣∣∣
k=k0

=

∫
D
Q curl(v′0)w0 dx.

Choosing ψ = v′0 in (34) and taking the complex conjugate of this equation shows that

d

dk
(Tkw0, w0)L2(D,C3)

∣∣∣∣
k=k0

=

∫
D

[
(I3 −Q) curl(v′0) · curl(v0)− k2

0v
′
0 · v0

]
dx = 2k0

∫
D
|v0|2 dx.

Lemma 22. Assume that k0 > 0 is an interior transmission eigenvalue with eigenpair (v0, w0) ∈
H0(curl, D)×Xk0. Then the mapping k 7→ (TkPkw0, Pkw0)L2(D,C3) is differentiable in k at k0 and

d

dk
(TkPkw0, Pkw0)L2(D,C3)

∣∣∣∣
k=k0

= 2k0

∫
D

|v0|2 dx+
4

k0
Re

∫
D

curl v0 · w0 dx. (36)

Proof. Recall from Lemma 18 that k 7→ Pkw0 is continuously differentiable with derivative

P ′kw0 =
d

dk
(Pkw0) = −(curl2−k2)Â′w0

+ 2kÂw0 , (37)

where Âw0 ∈W solves (30) for Aw0 instead of Ag and Â′w0
∈W solves (32) with g replaced by w0. As

in the proof of Lemma 18 we exploit that w0 = curlAw0 for Aw0 ∈ H(curl, D) ∩H(div0, D) because
w0 ∈ Xk0 is divergence-free. Now, integrate by parts twice to rewrite (32) for Â′w0

as∫
D

(curl2−k2)Â′w0
·(curl2−k2)ψ dx = 4k

∫
D
Âw0 ·(curl2−k2)ψ dx−2k

∫
D
w0 ·ψ dx ∀ψ ∈W (38)

and note that no boundary terms occur since Âw0 ∈ W ⊂ H0(curl, D) and thus curl Âw0 ∈ XN ⊂
H0(curl, D). We compute the derivative α′(k0) by the chain rule,

α′(k0) =

[
d

dk
(TkPkw0, Pkw0)L2(D,C3)

] ∣∣∣∣
k=k0

=
[
(T ′kPkw0, Pkw0)L2(D,C3) + (TkP

′
kw0, Pkw0)L2(D,C3) + (TkPkw0, P

′
kw0)L2(D,C3)

] ∣∣
k=k0

= 2k0

∫
D
|v0|2 dx+ (T ∗k0w0, P ′k0w0)

L2(D,C3)
+ (Tk0w0, P

′
k0w0)L2(D,C3),

and show next that T ∗k0w0 = Tk0w0. To this end, recall that Tk0w0 = Q(w0 + v0) where the first
component v0 ∈ H0(curl, D) of the eigenpair (v0, w0) to the transmission eigenvalue k0 solves∫

D

[
(I3 −Q) curl v0 · curlψ − k2

0v0 · ψ
]

dx =

∫
D
Qw0 · curlψ dx ∀ψ ∈ H(curl, D).

Obviously, extending v0 by zero outside D yields a radiating solution to (11). Moreover,

(Tk0w0, w0)L2(D,C3) = (Qw0, w0)L2(D,C3) +

∫
D

curl v0 · (Qw0) dx

=

∫
D
w0
>Qw0 dx+

∫
D

[
(curl v0)>(I3 −Q) curl v0 − k2

0|v0|2
]

dx.
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Since the latter expression is real-valued, Tk0 is self-adjoint on the kernel of w0 7→ (Tk0w0, w0), i.e.,
Tk0w0 = T ∗k0w0, and

d

dk
(TkPkw0, Pkw0)L2(D,C3)

∣∣∣∣
k=k0

= 2k0

∫
D
|v0|2 dx+ 2Re

(
Tk0w0, P

′
k0w0

)
L2(D,C3)

.

To compute the last term on the right we recall that w0 ∈ Xk0 implies Pk0w0 = w0, that is, the term
Âw0 from (37) vanishes and P ′k0w0 = −(curl2−k2

0)Â′w0
where Â′w0

∈W solves∫
D

(curl2−k2
0)Â′w0

· (curl2−k2
0)ψ dx = −2k0

∫
D
w0 · ψ dx ∀ψ ∈W. (39)

Since w0 ∈ Xk is divergence-free one shows as in the proof of Lemma 18 that Â′w0
is divergence-

free. In consequence, (curl2−k2
0)Â′w0

∈ L2(D,C3) is also divergence-free and Theorem 3.6 in [12]
implies that there exists a unique vector potential A0 ∈ H0(curl, D)∩H(div0, D) such that curlA0 =
(curl2−k2

0)Â′w0
= −P ′k0w0. This allows to show that

(Tk0w0, P
′
k0w0) = −

∫
D
Q(w0 + curl v0) · (curl2−k2

0)Â′w0
dx

= −
∫
D
Q(w0 + curl v0) · curlA0 dx

(34)
= −

∫
D

[
curl v0 · curlA0 − k2

0v0 ·A0

]
dx.

Since v0 ∈ H1
0 (D,C3) ∩ H0(div0, D) by Lemma 8, we can exploit Theorem 3.6 in [12] another

time to obtain the existence of a unique vector potential V0 ∈ H0(curl, D) ∩ H(div0, D) such that
curlV0 = v0. Obviously, curlV0 ∈ H1

0 (D,C3), which allows to continue the last computation by a
partial integration,

(Tk0w0, P
′
k0w0) = −

∫
D

[
curl v0 · curlA0 − k2

0 curlV0 ·A0

]
dx

= −
∫
D

[
curl2 V0 · (curl2−k2

0)Â′w0
− k2

0V0 · (curl2−k2
0)Â′w0

]
dx =

∫
D

[
curl2−k2

0

]
V0 · P ′k0w0 dx.

Recall that the projection Pkw0 onto Xk satisfies by Lemma 5 that∫
D
Pkw0 ·

[
curl2 ψ − k2ψ

]
dx = 0 ∀ψ ∈ H0(curl, D) such that curlψ ∈ H0(curl, D)

and hence in particular for all ψ ∈W . Differentiating the latter variational equation with respect to
k > 0 we obtain that P ′k0w0 satisfies∫

D
P ′k0w0

[
curl2 ψ − k2

0ψ
]

dx = 2k0

∫
D
Pk0w0 · ψ dx for all ψ ∈W .

Since Pk0w0 = w0 ∈ Xk0 and since V0 ∈W satisfies V0 ∈ H0(curl, D) and curlV0 = v0 ∈ H0(curl, D)
it holds by Lemma 5 that

∫
D w0 · [curl2 V0 − k2

0V0] dx = 0. In particular,

(Tk0w0, P
′
k0w0) =

∫
D

[
curl2−k2

0

]
V0 · P ′k0w0 dx = 2k0

∫
D
Pk0w0 · V0 dx

=
2

k0

∫
D

curl2 V0 · w0 dx =
2

k0

∫
D

curl v0 · w0 dx.
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8 Explicit Conditions for the Contrast

Now we derive a condition on the contrast function Q guaranteeing that the derivative α′(k0) is
non-zero at least for a couple of the smallest positive interior transmission eigenvalues k0 > 0 that
are below a certain bound. This critical bound is large enough to guarantee existence of transmission
eigenvalues smaller than this bound. For all such transmission eigenvalues the conditional duality
statement of Corollary 20 thus applies.

The following tools and results from [16] will be important in this section: As we saw in Lemma 8,
the function v0 from a transmission eigenpair (v0, w0) belongs in particular to

V =

{
v ∈ H0(curl, D),

∫
D
v · ∇ϕdx = 0 for all ϕ ∈ H1(D)

}
. (40)

Further, by µ0 > 0 we denote the smallest eigenvalue of the eigenvalue problem to find (µ, v) ∈
R × V such that

∫
D curl v · curlψ dx = µ

∫
D vψ dx for all ψ ∈ V . By the min-max-principle, µ0 =

minψ∈V ‖ curlψ‖2L2(D,C3)/‖ψ‖
2
L2(D,C3) and

µ0‖ψ‖2L2(D,C3) 6 ‖ curlψ‖2L2(D,C3) ∀ψ ∈ V. (41)

From [22, Corollary 3.51] we deduce the existence of ρ0 > 0 such that

‖v‖L2(D,C3) 6 ρ0‖ curl v‖L2(D,C3) ∀v ∈ H(curl, D) ∩H0(div0, D). (42)

Since V ⊂ H(curl, D) ∩ H0(div0, D) the Poincaré-type estimate (41) implies ρ2
0µ0 > 1. Finally,

from [16, Eq. (4.34)] we know that if Q 6 q0I3 < 0 in D and if M > 0 satisfies(
1 +

2

|q0|

)
µ0 6M2

(
1− 2ρ2

0

|q0|
M2

)
, (43)

then there exists at least one interior transmission eigenvalue k0 > 0 less than or equal to M .
We will now first consider the case of a constant contrast Q = q0I3 for q0 ∈ (−∞, 0) and derive

a condition guaranteeing that the set of transmission eigenvalues for which the implicit condition of
Corollary 20 applied is non-empty.

Theorem 23. If Q = q0I3 and if q0 < −(1+
√

5) satisfies that 8ρ2
0µ0 6 (2−q0)((1+q0)2−5)/(1−q0)2,

then there exists at least one transmission eigenvalue k0 > 0 such that

k2
0 <

2µ0(1− q0)

2− q0
.

For any transmission eigenvalue below the latter bound it holds that α′(k0) < 0 such that the duality
statement from Corollary 20 holds true.

Proof. Assume that k0 > 0 is a transmission eigenvalue with eigenpair (v0, w0) ∈ H0(curl, D)×Xk0 .
Due to Lemma 22, the derivative α′(k0) for an interior transmission eigenvalue k0 > 0 is given by

α′(k0) = 2k0‖v0‖2L2(D,C3) +
4

k0
Re (curl v0, w0)L2(D,C3), (44)

where 0 6= v0 ∈ H0(curl, D) solves (34). Choosing ψ = v0 in (34) shows that∫
D

[
(1− q0)| curl v0|2 − k2

0|v0|2
]

dx =

∫
D
Qw0 · curl v0 dx = q0

∫
D
w0 · curl v0 dx (45)
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and that

α′(k0) =

(
2k0 −

4k0

q0

)
‖v0‖2L2(D,C3) +

4(1− q0)

k0q0
‖ curl v0‖2L2(D,C3)

(41)
6

[(
2k0 −

4k0

q0

)
+

4(1− q0)

k0q0
µ0

]
‖v0‖2L2(D,C3) < 0 if and only if k2

0 <
2µ0(1− q0)

2− q0
= C(q0)2.

The latter condition is equivalent to (2µ0 − k2
0)q0 < 2µ0 − 2k2

0, which can only hold for q0 < 0 if
k2

0 < 2µ0. Under this assumption we conclude that q0 < min((µ0 − k2
0)/(µ0 − k2

0/2), 0). To ensure
the existence of transmission eigenvalues satisfying k0 < C(q0) we need to ensure by (43) that(

1 +
2

|q0|

)
µ0 6 C(q0)2

(
1− 2ρ2

0

|q0|
C(q0)2

)
⇔ 8ρ2

0µ0 6
2− q0

(1− q0)2
((1 + q0)2 − 5). (46)

The latter condition in particular implies that q0 < −(1 +
√

5).

We finally derive an analogous condition for a transmission eigenvalue k0 > 0 with eigenpair
(v0, w0) for a variable contrast of the form

Q := q0I3 +Q′ with q0 < −(1 +
√

5) and 0 > Q′ ∈ L∞(D,Sym(3)).

Plugging this representation of q into (45) shows that

Re (curl v0, w0)L2(D,C3) =
1− q0

q0
‖ curl v0‖2L2(D,C3) −

k2
0

q0
‖v0‖2L2(D,C3)

− 1

q0

∫
D
Q′ curl v0 · curl v0 dx− 1

q0
Re

∫
D
Q′w0 · curl v0 dx.

In the next estimate we denote the essential supremum of the spectral matrix norm of Q′ over D by
‖|Q′|2‖L∞(D). Plugging in the last estimate into (44) we deduce that

α′(k0) =

(
2k0 −

4k0

q0

)
‖v0‖2L2(D,C3) +

4(1− q0)

q0k0
‖ curl v0‖2L2(D,C3)

− 4

q0k0

∫
D
Q′ curl v0 · curl v0 dx− 4

q0k0
Re

∫
D
Q′w0 · curl v0 dx

6

[
1

µ0

(
2k0 −

4k0

q0

)
+

4

q0k0
(1− q0) +

4

|q0|k0
√
µ0
‖|Q′|2‖L∞(D)

]
‖ curl v0‖2L2(D,C3).

(47)

The latter expression is negative if and only if

k2
0 <

2µ0

2− q0

[
1− q0 − ‖|Q′|2‖L∞(D)/

√
µ0

]
:= C(Q)2.

To guarantee the existence of such a transmission eigenvalue we need to check condition (43), i.e.,
whether C(Q)2 satisfies µ0(2− q0)/|q0| 6 C(Q)2(1− 2ρ2

0C(Q)2/|q0|), or equivalently whether

(2− q0)2

2|q0|
6

[
1− q0 −

‖|Q′|2‖L∞(D)√
µ0

] [
1− 4ρ2

0µ0

(2− q0)|q0|

[
1− q0 −

‖|Q′|2‖L∞(D)√
µ0

]]
. (48)

If Q′ = 0 then the latter condition reduces to condition (46) from the last lemma and is hence
satisfied whenever q0 < −(1 +

√
5) satisfies (46) and ‖|Q′|2‖L∞(D) is small enough.

Lemma 24. If q0 < −(1 +
√

5) and if Q = q0I3 + Q′ satisfy (48) then there exists an interior
transmission eigenvalue k0 > 0 such that

k2
0 <

2µ0

2− q0

[
1− q0 − ‖|Q′|2‖L∞(D)/

√
µ0

]
.

For any transmission eigenvalue satisfying this condition the derivative α′(k0) is strictly negative
such that the duality statement from Corollary 20 applies.
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